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Abstract: Precipitation infiltrates into basal shearing zones, triggering seasonal landslide motion by
increasing pore-pressure and reducing shear resistance. This process is jointly controlled by basal
depth, rainfall intensity, soil moisture, and hydraulic conductivity/diffusivity. Using interferometric
synthetic aperture radar (InSAR), we detected and mapped a slow-moving slide in the southwestern
Oregon. Its basal depths are estimated using InSAR-derived surface velocity fields based on
the mass conservation approach by assuming a power-law rheology. The estimated maximum
thickness over the central region of the landslide is 6.9 ± 2.6 m. This result is further confirmed
by an independent limit equilibrium analysis that solely relies on soil mechanical properties.
By incorporating satellites-captured time lags of 27–49 days between the onset of wet seasons
and the initiation of landslide motions, the averaged characteristic hydraulic conductivity and
diffusivity of the landslide material is estimated as 1.2 × 10−5 m/s and 1.9 × 10−4 m2/s, respectively.
Our investigation layouts a framework for using InSAR and satellite-sensed soil moisture to infer
landslide basal geometry and estimate corresponding hydraulic parameters.
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1. Introduction

Mountainous topography and intense precipitation during winter seasons frequently give rise to
slope failures in northwestern United States, even devastating ones such as the 2014 Oso landslide
in Washington State [1,2]. Understanding the process of rainfall infiltration triggering landslides is
the key to mitigating potential hazards. For landslide studies, interferometric synthetic aperture
radar (InSAR), a remote sensing technique with wide spatial coverage and centimeter/millimeter-level
accuracy, is one of the most powerful and widely used tools and has been successfully applied to
numerous landslides all over the world (e.g., [3–7]). More importantly, InSAR-derived surface velocity
vectors are able to infer basal geometry and sliding volume of landslides for further modeling by
simplifying landslide movement to classical physical models: (i) a dislocation model [8] which idealizes
the slide as motion on a rectangular planar basal surface assuming elastic sliding materials; (ii) a
cross-section method [9] which regards a landslide as a set of independent cross-sections and ignores
the connection between adjacent blocks; (iii) a mass conservation approach which assumes that sliding
materials have homogeneous rheological properties and are incompressible [10]. These simplified
models vary in accuracy depending on both the particular landslide behavior and the InSAR-derived
displacement vectors.
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Elevated basal pore-fluid pressure through rainwater infiltration is considered the primary trigger
for seasonal landslides by weakening the soil’s resistive strength [11–15]. Pore pressure transmission
in saturated soils approximates a diffusive process depending on the hydraulic diffusivity [16,17],
yet basal pore-water’s pressure response to precipitation in post-summer unsaturated soils is strongly
affected by water infiltration rates (advective flow) that rely on hydraulic conductivity. Therefore,
landslide geometry, soil properties, and the initial soil moisture jointly control the response time of
slope failure to seasonal precipitation. Nevertheless, the characteristic hydraulic parameters can be
quantified if the failure depth and the water infiltration time are known.

Using SAR imagery from three spaceborne radar systems including Advanced Land Observing
Satellite (ALOS) Phased Array type L-band synthetic aperture radar (PALSAR), ALOS-2 PALSAR-2 and
Sentinel-1A/B, we detected a slow-moving landslide in southern Oregon and mapped its time-series
deformation from 2007 to 2011 and 2016 to 2018. The basal depth and volume of the landslide are
estimated using InSAR-derived surface velocity fields and the mass conservation approach [10,18].
The limit equilibrium analysis is implemented to validate the estimated failure depth. By incorporating
the failure depth and derived time lags between the arrival of wet seasons and the initiation of
seasonally landslide motions using InSAR and satellite soil moisture from SMAP (soil moisture active
and passive), we estimated the lower and upper bounds of characteristic hydraulic conductivity and
diffusivity of the landslide material.

2. Landslide Location and Geological Settings

The Lawson Creek landslide is a slow-moving translational landslide located in southwestern
Oregon with a ~1.5 km long and ~500 m wide sliding body (Figure 1). The slope faces northwest with
an aspect of ~294◦ clockwise from north, and the average slope is ~10◦. There are no obvious scarps
near the landslide’s head as it has been seated on deposits of a previous landslide, and the currently
active slide is only a small part of the ancient landslide deposits mapped in the Statewide Landslide
Information Database for Oregon (SLIDO [19], Figure S1). The bedrock of the slide is composed of
marine sedimentary rocks with sandstone/mudstone lithologies at the upper section, metamorphic
rocks with majorly serpentine at the middle section, and metamorphic rocks with phyllite/schist
lithologies at the lower section (Figure S2). The toe of the landslide enters Lawson Creek at an
elevation of 358 m, and its crown stands at 610 m. The primary precipitation in this region falls between
mid-October and mid-April, while little rainfall comes in other months. Moderately dense vegetation
covers the landslide site.
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Figure 1. Geographical location of the Lawson Creek landslide and synthetic aperture radar (SAR) 
data used in this study. The landslide (marked with a red star) is located in Curry county, 
southwestern Oregon, about 27 km inland from the Pacific Ocean. The location of Oregon is outlined 
in blue in both scaled-down (top-left corner) and scaled-up (bottom-left corner) maps. The red box at 
the bottom-left-corner figure represents geographical location of the whole Figure 1, and the magenta 

Figure 1. Geographical location of the Lawson Creek landslide and synthetic aperture radar (SAR) data
used in this study. The landslide (marked with a red star) is located in Curry county, southwestern
Oregon, about 27 km inland from the Pacific Ocean. The location of Oregon is outlined in blue
in both scaled-down (top-left corner) and scaled-up (bottom-left corner) maps. The red box at the
bottom-left-corner figure represents geographical location of the whole Figure 1, and the magenta
point represents a ground reference site for soil-moisture measurements (Miller Woods station).
The red diamond near the landslide site represents a precipitation collection site (Agness station).
SAR imagery covering the landslide is denoted with colored rectangular boxes annotated by track names
in corresponding colors. The background shaded relief map was accessed from U.S. Geological Survey.

3. Materials and Methods

3.1. SAR Interferometry for Landslide Time-Series Mapping

SAR imagery from the ALOS ascending track T224, ALOS-2 ascending tracks T68 and T69 and
descending track T171, and the Sentinel-1A/B ascending track T35 were used to map displacements
of the Lawson Creek landslide (Figure 1; Table 1). The 1-acrsec Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) obtained from U.S. Geological Survey (USGS) was used in
the InSAR processing. Baseline error and stratified atmospheric artifacts were removed before phase
unwrapping. The GAMMA software [20] was used for interferogram generation, phase unwrapping,
and removal of stratified atmospheric artifacts. Unwrapping errors in a few interferograms caused
by high-gradient sliding movements were corrected by separating the original wrapped phase into
an estimated high-gradient displacement component and a residual-phase component (within 2π
variation). We unwrapped only the residual-phase component and added it back to the estimated
high-gradient component to obtain the final unwrapped phase. The high-gradient displacement
component was estimated based on interferograms with short temporal baselines and very good
coherence. The corrected interferograms have been listed in the supplementary table.
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Table 1. Spaceborne SAR datasets and usages.

Radar Satellites Tracks Flying Directions Time Span Usages

Sentinel-1A/B T35 Ascending 2016–2018 Time-series mapping/surface
velocity inversion

ALOS T224 Ascending 2007–2011 Time-series mapping

ALOS-2
T68 Ascending 2015–2018 Time-series mapping/surface

velocity inversion

T69 Ascending 2014–2018 Surface velocity inversion

T171 Descending 2015–2018 Surface velocity inversion

SAR acquisitions from the ALOS T224 and the Sentinel-1A/B T35 were used to generate time-series
displacement maps of the landslide, as they provide temporally dense and coherent observations that
allow construction of a fully connected network for time-series inversions (Figure 2). To verify the
C-band sentinel-1A/B time series measurements, we also produced results using the L-band ALOS-2
T68 images spanning the same time period (Figure 4d). The full set of interferograms that contain
moderate or better coherence (over 0.2 for C-band data and over 0.4 for L-band data) were used for
time-series maps: 36 interferograms from the ALOS T224, 5 from the ALOS-2 T68, and 73 from the
Sentinel-1A/B T35 (Figure 2) were selected and processed based on the coherence-weighted small
baseline subset (SBAS) method [4,21].

Annual deformation rates in LOS (line of sight) directions from the three ALOS-2 tracks and the
Sentinel-1A/B track T35 were generated with the stacking method for deriving 3D surface velocity fields
of the landslide (Table 2), as these data overlap almost the same time period and provide observations
with different LOS geometries.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 17 
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Figure 2. Spatial and temporal baselines of used interferometric synthetic aperture radar (InSAR) pairs
from multiple tracks. (a) Advanced Land Observing Satellite (ALOS) track T224, (b) Sentinel-1A/B
track T35, (c) ALOS-2 track T68, (d) ALOS-2 track T69, and (e) ALOS-2 track T171.
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3.2. Thickness Inversion

Constraining the basal depth of a landslide is critical for characterizing movement and estimating
the sliding volume. The landslide thickness inversion is achieved by using the surface velocity field
obtained from InSAR measurements and applying the principle of mass conservation with assumptions
about the variation of the landslide velocity field below the surface [22]:

w = ∇·
(

f usur f h
)
+ usur f · ∇h (1)

where w is the vertical component (outwardly perpendicular to the basal plane as positive) of
surface velocity vectors, usur f the surface horizontal components, and h the landslide thickness.
f = (3−Y/P)/3 is a constant between 0 and 1 depending on landslide rheology, where Y and P are
the thickness of the yield zone and the overlaying plug region, respectively [22]. f = 1/2 is consistent
with a linear vertical velocity profile, f = 2/3 with Newtonian viscous flow, 2/3 < f < 1 with plug flow,
and f = 1 with a rigid sliding block [10]. Equation (4) can be converted to matrix form with finite
difference approximations:

wi, j = ui, j
f hi+1, j − f hi−1, j

∆x
+ vi, j

f hi, j+1 − f hi, j−1

∆y
+ f hi, j(

ui+1, j − ui−1, j

2∆x
+
νi, j+1 − νi, j−1

2∆y
) (2)

where ∆t is the time increment, u and v are surface velocity vectors (Figure 3), ∆x and ∆y are grid sizes
in u and v direction, respectively, and subscripted i and j are indices in u and v.

The surface velocity field can be derived from LOS observations of InSAR, yet reconstructing 3D
surface velocity vectors requires at least three independent measurements. In this study, assuming
that the sliding body only moves along the downslope direction on the slip plane (i.e., u = 0) [23,24],
we construct a pseudo three-dimensional velocity field using the LOS velocities from the ALOS-2
ascending tracks T68 and T69, ALOS-2 descending track T171, and Sentinel-1A/B ascending track T35.
Defining θ as the radar look angle, φ the satellite heading angle, α the slope angle, β the slope aspect,
and w a vector perpendicular to the slope surface defined by vectors u and v, the surface velocity field
V = [u, v, w]T of each point is related to LOS measurements as:[

l
cv

]
·s·V =

[
LOS

0

]
(3)

where l = [l1, l2, l3, · · · lk ]
T is the radar look vector of k independent LOS observations, and l1 = l2 =

· · · = lk = [− sinθ sinφ sinθ cosφ − cosφ]T, cv = [− sin β cos β 0] is the constrain condition, LOS is
the k independent InSAR measurements, and s is a coordinate transformation matrix:

s =


cos β cosα sin β cosα − sinα
− sin β cos β 0
cos β sinα sin β sinα cosα

 (4)

We solve Equation (3) to obtain the pseudo 3D surface velocity vectors with the least squares
approach, and solve Equation (2) for h by using a nonnegative least squares method [10,25] and setting
boundary conditions that the landslide’s thicknesses range from 0 to 200 m and non-landslide regions
have a thickness of zero.

3.3. Time Lags

The initiation of seasonally active landslides typically begins days to several weeks after the wet
season has arrived [17]. This time lag characterizes how fast the basal pore-air pressure responds
to an intense rainfall event, and is jointly controlled by several factors, including the hydraulic
conductivity/diffusivity of the landslide material, the landslide thickness, and the rainfall intensity [3,26].



Remote Sens. 2019, 11, 2347 6 of 17

Assuming the top soil layers have been unsaturated because of considerable water loss during dry
summers, water infiltration (advective flow) in the top layers is controlled by unsaturated hydraulic
conductivity K, which is related to the corresponding saturated hydraulic conductivity Ksat as [27]:

K = KsatSe
L
{

1−
[
1− Se

n
n−1

]1− 1
n

}2

(5)

where L = 0.5 is an empirical parameter [28], n = 2 is a measure of pore-size distribution [27], and the
effective saturation Se is calculated as

Se =
θ− θr

θs − θr
(6)

with the measured volumetric soil moisture θ, the residual water content θr, and the saturated water
content θs. Assuming that the landslide consists of multiple homogenous soil layers, the time lag TK

for surface water vertically infiltrating to depth Hs is given as:

TK = Σm
1 (Ri/Ki) (7)

where Ri and Ki are the thickness and the hydraulic conductivity of the i-th layer, respectively, and the
sliding body comprises m soil layers. In saturated soils, an approximately diffusive process would
dominate pore pressure responses. The time scale TD for pore pressure to diffuse vertically downward
for depth H is given by

TD = H2/D0 (8)

where D0 is the hydraulic diffusivity. Advective water flow is slower than hydraulic diffusion, and
they together control the response time of basal pore pressure to rainfall events if the groundwater
level is between the basal plane and the ground surface.

3.4. Failure Depth Using Limit Equilibrium Analysis

Slope stability evaluation is implemented based on the Mohr-Coulomb shearing failure criterion.
Assuming that the hillslope consists of soil columns with cross-section area A and height Hs, and
cohesion c exists among column cells [29] (Figure 3). Because of the self-gravity, a vertical force FG is
posed on the base of each soil column:

FG = Mg = AHS[θρw + (1−φ)ρs]g (9)

where M is the mass of each soil column, g the gravity of earth, θ the volumetric water content, ρw the
density of water, ρs the bulk density of soil, and φ the porosity of soil.
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Relating FG to the cross-section area of soil columns along the slope A/ cos β, FG can be decomposed
into normal stress σN and downslope driving component σd:

σN =
FN

A/cosα
=

FG cosα
A/cosα

= HS[θρW + (1− n)ρs]g cos2 α (10)

σd =
Fd

A/cosα
=

FG sinα
A/cosα

= HS[θρW + (1−φ)ρs]g sinα cosα (11)

where FN is the counteracting normal force, Fd the downslope driving force, and α the slope angle.
When perched water table reaches height Hw, the resisting forces τ f are reduced as the pore pressure
uw weakens the effective stress σe by ua = Hwρwg cos2 α under saturated conditions

τ f = c + σe tanγ = c + (σN − uw) tanγ

= c +
{
Hs[θρw + (1−φ)ρs]g cos2 α−Hwρwg cos2 α

}
tanγ (12)

Slope failures occur when driving force σd exceeds shearing resistance τ f . We can obtain Hw as a
function of Hs using the critical condition σd = τ f

Hw = −
θρw + (1−φ)ρs cosα(sinα− cosα tanγ)

ρwg cos2 α tanγ
Hs +

c
ρwg cos2 α tanγ

(13)

Hw is a monotonically increasing function with respect to Hs if α < γ, as dHw
dHs

> 0. Moreover, Hw

must be less than or equal to Hs as overland flow would form when Hw > Hs. Letting Hw = Hs yields
the maximum height that a saturated soil column can maintain stable without shearing failure.

Under unsaturated soil conditions, soil strength is enhanced by τh because of the capillary pressure.
The shearing resistance τ f can be expressed as

τ f = c +
{
Hs[θρw + (1−φ)ρs]g cos2 α− τh

}
tanγ (14)

τh = ρwg|hcSe| = ρwg
∣∣∣hbSe

1−1/λ
∣∣∣ (15)

with capillary pressure head hc, air-entry value hb, pore size distribution parameter λ [30], and effective
saturation Se.

4. Results

4.1. Time-Series Displacements and Annual Deformation Rates

From 2007 to 2011, sliding movement of the Lawson Creek landslide is captured by SAR data
from the ALOS ascending track T224. Figure 4a illustrates the time-series displacements of a typical
fast-moving point P (Figure 5c) between 2007 and 2011. As the measurement of one single pixel can be
easily contaminated by noises, we averaged the time-series deformation of the 3 × 3 array of adjacent
points, which corresponds to a 60 m × 60 m area on the landslide surface. Similarly, we mapped
time-series displacements of the same point from 2016 to 2018 using imagery from the Sentinel-1A/B
ascending track T35, and from the ALOS-2 ascending track T68 for cross-validation. The results show
that both the L-band ALOS-2 and the C-band Sentinel-1A/B datasets produce highly similar results
(Figure 4d). The cumulative downslope displacement of the slide is about 1.5 m from 2007 to 2011
and around 0.8 m from 2016 to 2018, and movement patterns resemble an annual cycle throughout
the years: the sliding motion starts to accelerate after wet seasons arrive and decelerates substantially
when summer comes; while a considerable amount of deformation occurs from mid-November
to mid-May, few displacements appear during the dry seasons from mid-May to mid-November
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(Figure 5d,e). Nevertheless, the landslide movement does not totally stop even during dry summers;
similar behaviors have been observed at other landslides over the pacific northwest [5,23].

1 
 

 

Figure 4. Relationships among landslide displacements, precipitation, and soil moisture. (a) Red points
show the along-slope time-series displacement of a selected fast-deforming point P within the landslide
area measured by ALOS track T224, and (b) gray points depict sliding acceleration (generated by
differencing the time-series deformation) of the point P. The black line at the bottom, scaled by the right
axis labeling, represents daily precipitation, which is collected at the Agness meteorological station,
about 10 km north from the landslide site. Time lag in each year is marked with green double-headed
arrows. (c) In situ soil moistures measured at the Miller Woods station at multiple depths. (d) Red
circles and blue diamond represent time-series displacements measured from Sentinel-1 track T35
and ALOS-2 track T68, respectively. (e) The black line at the bottom, scaled by the right axis labeling,
represents the daily precipitation collected at the Agness meteorological station. (f) In situ soil moistures
measured at the Miller Woods station at multiple depths, and SMAP (soil moisture active and passive)
soil moisture acquisitions (5 cm in depth) at the landslide site and the Miller Woods station.

The map of annual deformation rates show that the Lawson creek landslide had been moving
downslope at almost the same rates (maximum 40 cm/yr) with spatially similar patterns during the
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two separate observation periods (Figure 5a,b and Figure S3). It has been continuously creeping for the
past decade. Specifically, the middle section presents much faster movements than both the landslide
head and toe sections. It is worth noting that, despite the spatial differences in movement rates, all the
points on the landslide surface demonstrate a highly similar trend on the temporal axis. As shown in
Figure 5d,e, the points in varied locations present apparent seasonal accelerations on the same dates
near mid-November.
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obtaining displacement time series, and the landslide moves downward toward the Lawson Creek. 

Figure 5. Average along-slope displacement rates and spatial deformation patterns. Annual along-slope
movement rates (a) during the period 2007–2011 measured from ALOS T224, (b) during 2015–2018
from ALOS-2 T68, and (c) during 2016–2018 from Sentinel-1 T35. The point P was selected for obtaining
displacement time series, and the landslide moves downward toward the Lawson Creek. (d) Downslope
cumulative displacements at varied locations M1–M7 as shown in (a), mapped with ALOS T224 imagery.
(e) Downslope cumulative displacements at varied locations S1–S7 as shown in (c), mapped with
Sentinel-1A/B T35 images.

4.2. Time Retardation to Seasonal Precipitation

To further characterize the dynamic behavior of the landslide responding to season changes,
we used the point P as a representative and employed the finite-difference formula to obtain the
acceleration of its motions:

a j =
2(v+ − v−)
t j+1 − t j−1

(16a)

v+ =
d j+1 − d j

t j+1 − t j
(16b)

v− =
d j − d j−1

t j − t j−1
(16c)
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where d j and a j represent, respectively, the cumulative displacement and the acceleration of the
point P at time t j. v− and v+ represent the deformation rates. Seasonal landslide movements start
when a j > 0. For the temporally dense Sentinel-1A/B measurements, recognizing onset dates of the
seasonal movements is easy and straightforward through visual interpretation (Figure 4d), while
for the temporally sparse ALOS T224 results, the finite-difference method is applied to determine
the dates when seasonal sliding commence every year. Note that though there are several visible
motion accelerations from the Sentinel-1A/B displacement time series, here we only focus on the most
noticeable seasonal acceleration, namely, the first wet-season acceleration in around mid-November
after a continuous summer deceleration.

As shown in Figure 4b,e, although the wet-season arrives in mid-October regularly every year,
the landslide does not begin to accelerate until several weeks later, generally in November. However,
the exact time lags vary by years. The maximum values stand at 41 days, 41 days, 31 days, 26 days,
43 days, and 37 days for 2007, 2008, 2009, 2010, 2016, and 2017 respectively (Figure 4a,d) as the
displacements might happen before the date when satellites capture the deformation. The 46-day
revisit cycle of the ALOS acquisitions cannot provide an effective lower bound to the time lags for
years 2007–2011, but the Sentinel-1A/B datasets with a minimum revisit period of six days successfully
set the lower boundaries to 25 days for both years 2016 and 2017. As the landslide always accelerates
after the arrival of wet-seasons (i.e., the theoretical lower boundary is 0 day), the time lag ranges are
0–41 days, 0–41 days, 0–31 days, 0–26 days, 25–43 days, and 25–37 days for 2007, 2008, 2009, 2010, 2016,
and 2017, respectively.

Every year, the soil moisture gradually falls to a year low in the summer and rises back to a high
level as the wet-season approaches, and it maintains at this high level until the next summer comes
(Figure 4c,f). Here we define the arrival date of wet seasons as when the 40-inch-depth (~1 m) soil
moisture at the Miller Woods station rises back to the same level as previous wet seasons, based on the
assumption that a few slight early-autumn rainfall events can hardly mark the coming of wet seasons.
In other words, the top 40-inch soils have been saturated.

There is a three-fold justification for using soil moisture records from the Miller Woods station to
represent for the landslide site. First, both sites undergo almost the same rainfall events as revealed
by the SMAP soil moisture acquisitions at these two sites. As illustrated in Figure 4f, each rise of the
fluctuated SMAP soil moisture can be interpreted as a distinguishable rainfall event, and SMAP data
at both sites constantly exhibit such rise responses at the same dates. It is worth noting that SMAP soil
moisture data used here are captured by satellites independently. The values are the mean soil moisture
of the top 5-centimeter soil layers, thus even slight rainfall events can lead to a rising fluctuation on the
SMAP data. Second, both sites have similar soil layer compositions. Soils at the Miller woods station
constitute layers of silt loam (0–16 cm depth), silty clay loam (16–33 cm), silty clay (33–63 cm), and
gravelly clay loam (63–152 cm). These soil layers have similar saturated hydraulic conductivity as that
at the landslide site, which comprise of channery loam (0–30 cm), silt loam (30–56 cm), silty clay loam
(56–74 cm), sandy loam (74–158 cm), and silty clay loam (158–183 cm) (from NCSS soil pedons [31] and
local surveys [32]). Calculating infiltration time of the top 40-inch soils at both sites using Equation (7)
and the mean hydraulic conductivities in Table 2 shows that the landslide site would respond earlier
than the Miller Woods by only 3.7 days. Third, soil moisture measured at the Miller Woods ground
station matches well with the SMAP acquisitions in terms of rainfall responses though the absolute
value varies; however, here only the post-summer soil moisture rise was used rather than the absolute
value to determine the dates.

Be aware that the SMAP data which represent average volumetric water contents of the top 5 cm
soils are sensitive to any sight rainfall events, thus it is helpful to refer to the ground soil moisture
at the 40-inch level to determine the dates according to our definition of the arrival of wet-seasons.
An alternate empirical approach is thresholding SMAP soil moisture by a 25% post-summer rise in
that year, that is:
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θthresh − θmin

θmax − θmin
= 25% (17)

where θmax is the mean SMAP soil moisture during the wet season, θmin is the minimum SMAP soil
moisture in the summer, and the arrival date of the wet season can be determined when the SMAP soil
moisture rises back to θthresh after a dry summer. For years 2016 and 2017, this method can produce the
same results with an uncertainty of 2 days as using the ground-truth data.

Table 2. Saturated hydraulic conductivity for soils with low bulk density (data modified from [33]).

Soil Types Data Samples Saturated Hydraulic Conductivity (m/s)

25% Quartiles 75% Quartiles Geometric Mean

Silt loam 58 3.6 × 10−6 2.8 × 10−5 1.0 × 10−5

Silty clay loam 18 1.2 × 10−6 1.6 × 10−5 6.7 × 10−6

Clay loam 17 4.2 × 10−6 1.6 × 10−5 7.5 × 10−6

Sandy loam 127 6.6 × 10−6 4.1 × 10−5 1.8 × 10−5

Silty clay * - 1.4 × 10−6–4.2 × 10−7

* from National Soil Survey Handbook.

Soil moisture records at the 40-inch depth of the Miller Woods station are unavailable from 2007
to 2011, therefore, the corresponding time lags are calculated by using soil moisture data at the 20-inch
depth and adding on extra 5 days. The extra days are the observed time interval between successive
soil moisture surges at the 20-inch and 40-inch depths right after the 2016 and 2017 summers, which
represent the water infiltration time from the 20-inch to the 40-inch depths (Figure 4f).

4.3. Basal Depths and Volume Inferred from InSAR Observations

Annual displacement rates from two ALOS-2 ascending tracks T68 and T69, one descending track
T171, and one Sentinel-1A/B ascending track T35 were employed to derive the 3D surface velocity
fields of the landslide (Table 1; Figure 5 and Figure S3). As the observations from the three ascending
tracks are not highly independent because of the similar LOS directions, we constrain the landslide
motions to be along-slope to achieve stable inversions. The 3D surface velocity vectors are shown in
Figure 6a,b.

Thickness inversion of surface points corresponding to every SAR-interferogram pixel
(20 m × 20 m) were implemented by using the mass conservation approach and assuming a power-law
rheology as Equation (1). Here the yield slope-perpendicular depth of each pixel has been converted to
vertical thickness (Figure 6c,d). The thickness map shows that the sliding plane at the middle and
upper sections are seated deepest, with a maximum mean basal depth of the central region as 5.8 m to
7.8 m (Figure 6c,d), assuming the landslide is characterized by a plug flow (2/3 < f < 1) as suggested
by borehole measurements of multiple slow-moving landslides [22,34–39]. The basal plane has an
upwardly concave shape that exhibits greater thickness in the central and gradually shallows to the
margin area.

The uncertainty caused by the u = 0 assumption can be largely quantified by defining u = kv,
where k is a constant mediating movement direction of the landslide. The constraint in Equation (3) is
modified to cv =

[
k cos β+ sin β k sin β− cos β 0

]
, accordingly. Letting k = ±0.2 is equivalent to

varying the landslide movement direction by 11◦, which yields mean basal depths of the central region
as 4.3 m to 6.9 m for f = 1, and 6.0 m to 9.5 m for f = 2/3. Taking into account the uncertainties, the
estimated basal depth is expanded to 6.9 ± 2.6 m. Then, the estimated volume of the sliding body
ranges from 2.9 × 106 to 5.9 × 106 m3.
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Figure 6. Surface velocity vector and thickness of the Lawson Creek landslide. (a) Surface velocity fields
derived from InSAR LOS measurements and (b) a close-up of a typical fast-moving area. Thickness
inversion results by setting (c) f = 1 and (d) f = 2/3 are shown with the same view angle as (a), and
the non-landslide regions are manually masked out. The dashed blue square in (d) outlines the central
region for calculating the average depth.

4.4. Failure Depths from Limit Equilibrium Analysis

Basal geometry inversions illustrate that the landslide body is thick in the central section yet
shallow in the head and toe sections. However, it remains unclear whether the initial rainfall-triggered
motions start from the shallow sections or commence from the thickest central section. The limit
equilibrium analysis was implemented to obtain the theoretical initial failure depth.

Slope failures may occur under both saturated and unsaturated soil conditions [17,40].
Mohr-Coulomb failure criterion is applicable to both cases for slope stability evaluation:

τ f = c + σe tanγ (18)

where τ f is the limit shear strength, c the effective cohesion, γ the internal friction angle, and σe the
effective stress. Slopes failures occur when the driving force along the downslope direction σd exceeds
the limit shear strength τ f .

Limit equilibrium analysis of the landslide in an unsaturated condition (Equations (14) and (15))
with parameters from [41] demonstrates that shearing failures cannot occur unless the soil moisture is
over 0.39, yet soil moisture records (SMAP satellite acquisitions and ground records) at both the Miller
Woods station and the landslide site suggest that soil moisture at the landslide site is less than 0.35
during summers. Therefore, the seasonal movement of the landslide is initiated by shear failures of
saturated soils.

Geotechnical logs of a nearby 69-feet deep water well (CURR 1286) suggests that the shearing
zones of the Lawson Creek landslide is primarily composed of brown clay. As detailed soil mechanical
parameters are unavailable, the uncertainties are accounted by expanding the parameter range to
include soils ranging from silty clay to clay based on global laboratory and field tests: internal friction
angle γ = 29± 7◦ and cohesion c = 12± 3 kpa [32,42–48]. The slope angles of the landslide on the basal
surface is less than 15◦. Using the measured volumetric water content θ = 0.41 during wet-seasons
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and soil porosity φ = 0.47 [41], we can obtain the critical basal depth Hc = 7.6± 1.6 m where shearing
failures would commence using Equation (13), based on the Mohr-Coulomb failure criterion. This result
agrees well with the InSAR-inferred basal depth of 6.9± 2.6 m, which confirms the correctness of the
inverted thickness based on mass conservation and surface velocities. Meanwhile, it indicates that the
deep-seated central region is close to stress equilibrium when the soils are fully saturated, and a slight
pore pressure rise would trigger the motion acceleration. Note that the landslide had motions even
during the dry summer, while intermittent post-summer rainfall did not cause simultaneous motion
acceleration (Figure 4), implying that the seasonal acceleration is caused by pore pressure rise rather
than loading from rainwater.

4.5. Potential for Estimating Hydraulic Parameters

Taking into account the uncertainties caused by SMAP data (±2 days) and soil compositions
(−3.7 days), the time lags of 25–43 days observed from satellite remote sensing is expanded to
26.7–48.7 days. With the known time lags and InSAR-inferred basal depth of 6.9± 2.6 m, the rainwater
infiltration rate can be quantified. Here the time lags stand for water infiltration from the 40-inch depth
to the initial failure depth.

As groundwater level decreases during the dry summers, initial wet-season precipitation must
saturate the top soil layers via advective flow first before the hydraulic diffusion process takes control
of the basal pore-pressure response. The averaged hydraulic conductivity of soil layers above the
groundwater table and the averaged hydraulic diffusivity below the table can both be effectively
quantified with the given groundwater levels. However, such data is not available for this case study
and therefore only the upper and lower bound of the hydraulic parameters can be estimated.

Assuming the groundwater table is below the basal plane leads to an estimate of characteristic
hydraulic conductivity Ks (upper bound) as 2.4 × 10−5 m/s using Equations (5) and (7), whereas
assuming fully saturated soils yields an estimated characteristic hydraulic diffusivity D0 (lower bound)
as 2.6 × 10−6 m2/s using Equation (8). Note that here characteristic hydraulic conductivity/diffusivity
means to treat a soil column that constitutes multiple heterogeneous layers as one single soil sample.

Employing empirical relationship between Ks and D0 of the same soils can provide the other
bounds for the estimations. The vertical soil profile of the Lawson Creek landslide comprises boulders
and clay brown, clay brown, and clay blue layers from the nearby water well log (CURR 1286).
We interpret the characteristic hydraulic conductivity as similar to that of silty clay and obtain an
empirical approximation as D0 = 102

·Ks [16,49]. It can yield a lower bound for the Ks as 2.6 × 10−8 m/s
and an upper bound for D0 as 3.7 × 10−4 m2/s. Accordingly, combining both approaches can
bound the characteristic hydraulic conductivity to (2.6 × 10−8, 2.4 × 10−5) m/s and the characteristic
hydraulic diffusivity to (2.6 × 10−6, 3.7 × 10−4) m2/s. The average is given as Ks = 1.2 × 10−5 m/s
and D0 = 1.9 × 10−4 m2/s. Given the fact that even field-measured hydraulic conductivity has an
uncertainty by 103 m/s [15,16], the above-described estimations is of important practical value.

5. Discussion

In this investigation, basal depth inversion of the landslide is achieved based on mass conservation
and InSAR-captured surface velocity. A u = 0 (Figure 3) assumption is employed to reconstruct the 3D
surface velocity field, as currently spaceborne SAR images can only provide two independent LOS
observations. This assumption largely agrees with the landslide behavior monitored by continuous
GPS (global positioning system) at several sites [23,50] and can provide a reasonable estimation of the
thickness distribution over the whole landslide area, as confirmed by the uncertainty analysis and by
the independent limit equilibrium analysis by feeding a wide range of soil mechanical parameters.
Besides, it is worth noting that the selected wide range of rheological parameter (2/3 < f < 1) has also
partly compensated the uncertainty derived from the 3D surface velocity reconstruction.

Determining the starting date of the wet season is a key difficulty in estimating time lags.
Thresholding cumulative precipitation is one of the options. However, analyzing cumulative rainfall
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from summer to the date of the first motion acceleration reveals that there are significant variations
by years. For instance, the cumulative precipitation stands at 290 mm, 256 mm, 232 mm, 341 mm,
381 mm, and 336 mm for year 2007, 2008, 2009, 2010, 2016, and 2017, respectively (Figure 4b,e), which
can hardly lead to a reliable and accurate threshold value. In situ precipitation data show that the first
several post-summer rainfall events are generally intermittent, while a single rainfall event cannot
represent the arrival of wet-seasons. Cumulative rainfall infiltrates into the basal plane to trigger
seasonal landslide motions, yet a single rainfall with a short duration and a small intensity is unlikely
to saturate the entire sliding material and raise pore pressure on the basal plane. In contrast, the soil
moisture that reflects the degree of saturation of soils can thus be a good indicator to define the starting
date of wet seasons.

The lack of in situ measurements such as groundwater level from this far-away landslide site
has posed challenges to the hydraulic parameter estimation. Hence, only lower and upper bounds
for characteristic hydraulic conductivity and diffusivity are estimated. To account for all related
uncertainties, the average basal depth of the central landslide region is used, rather than a single point.
The derived time lags also have included the uncertainties that stem from satellite revisit cycle and
varied soil moisture methods and locations. Because of the limited field data, here we only aim to
layout a framework for estimating landslide thickness and corresponding hydraulic parameters, and
better results can be obtained if more field data are available.

Regarding SAR datasets for landslide studies, L-band data overall exhibit better coherence on
vegetated terrains than C-band data, while the C-band Sentinel-1 imagery has unique advantages
on time-series mapping because of the dense temporal acquisitions. The free ALOS and Sentinel-1
images have greatly contributed to the data availability between 2007 and 2011 and after 2015, and
the gap between 2011 and 2015 might be filled with commercial SAR datasets. Currently, spaceborne
SAR datasets can only provide two independent observations, yet incorporating data from airborne
missions such as Uninhabited Aerial Vehicle SAR (UAVSAR [51]) is a potential solution to obtain the
three-dimensional surface velocity field of a landslide.

The Lawson Creek landslide is a typical slow-moving slide that is seated on the deposit of an
ancient landslide (>150 years [19]). The slow-moving behavior is very likely attributed to the soil
porosity [52], yet the seasonal dynamics are primarily associated with precipitation. InSAR observations
reveal that the central region has greater displacement rate than the toe and head sections. These imply
that the central area is the active part, while movements of the landslide head and toe might be passive.
During the past decade, the moving rate has been slow and stable, and currently no sign of runout
is present.

6. Conclusions

This investigation employs multiple SAR datasets including ALOS, ALOS-2, and Sentinel images
spanning 2007–2011 and 2016–2018 to map time-series displacement of a translational landslide in the
southern Oregon, which reveals that the landslide has been continuously creeping for the whole past
decade with a maximum rate of 40 cm/yr in the upper middle section. The landslide motion exhibits
apparent seasonal patterns with considerable displacements during wet seasons from mid-November
to mid-May while little deformation during dry summers. The basal depth of the landslide is inverted
based on the mass conservation theory and InSAR-inferred surface velocity fields by assuming a
power-law rheology. The results show that the Lawson Creek landslide is seated deepest in the central
region and gradually shallows to the margin area. The mean thickness of the central region stands
at 6.9± 2.6 m. This estimation is also validated and confirmed by an independent limit equilibrium
analysis which demonstrates that initial shearing failure of saturated soil columns would occur at
7.6± 1.6 m depth.

The time lags between the arrival of wet seasons and the onset of seasonal landslide motions are
determined based on the observed periodic post-summer rise of soil moisture (SMAP and ground
records) and InSAR time-series measurements. During the observation period, the time lags range
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from 26.7 to 48.7 days including uncertainties. InSAR observations reveals that the landslide kept
moving even during dry summers and intermittent post-summer rainfall did not cause simultaneous
acceleration of landslide motion, implying that seasonal accelerations are caused by basal pore-pressure
rise rather than loading of rainwater. Accordingly, we take the water infiltration as purely advective flow
and purely water diffusion respectively to estimate the lower and upper bounds of the characteristic
hydraulic conductivity Ks and diffusivity D0 of the landslide material, as groundwater level data are
unavailable. The yield average values are Ks = 1.2 × 10−5 m/s and D0 = 1.9 × 10−4 m2/s.

As with most landslides all over the globe, for the Lawson Creek landslide, in situ measurements
of basal depth and hydraulic parameters are unavailable despite their importance for characterizing
landslide behaviors. However, here we have explored the possibility of using primarily remote
sensing datasets to infer the landslide thickness and estimate the hydraulic conductivity and diffusivity.
More importantly, this established framework is able to yield better estimates when extra inputs are
available. For instance, thickness inversion can be improved with more than three independent LOS
observations, and hydraulic estimations can be enhanced with known groundwater levels.
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deep-seated (>4.5 m) landslide deposit. The yellow polygon outlines the actively deforming region captured by
InSAR from 2007 to 2018. (b) Landslides view from optical remote sensing. The background RGB image was
obtained in June 2019, Figure S2: Geological settings of the landslide. The landslide is outlined with the black
polygon. Oregon geological maps are accessed from: https://www.oregongeology.org/geologicmap/, Figure S3:
Annual along-slope deformation rates of the landslide obtained from ALOS2 tracks T69 during 2014–2018 and
T171 during 2015–2018.
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