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Abstract Knowledge of basal stresses is essential for analyzing slope stability andmodeling the dynamics
and erosive potential of debris flows and avalanches. Here we derive and test new algebraic formulas for
calculating the shear stress τ and normal stress σ at the base of variable‐thickness granular debris masses in
states of static or dynamic equilibrium on slopes. The formulas include a lateral pressure coefficient κ,
but use of a fixed value κ = 0.7 yields predictions of σ that on average err by less than 3% and of τ that on
average err by less than 13% inmatching basal stresses measured in six large‐scale experiments involving wet
debris masses with varying geometries and compositions. Much larger prediction errors result from use of
infinite‐slope or shallow‐debris approximations. Specialized versions of the new formulas apply if basal
topography is discretized and represented by a “staircase” function in a digital elevation model. Use of these
formulas to assess static limiting equilibrium conditions shows that the apparent basal Coulomb friction
angle ϕtread of debris that engages friction acting on the horizontal surfaces (or “treads”) of a staircase
sloping at an angle θ is generally described by tanϕtread = tan (ϕ − θ)+κ tan θ, where ϕ is the true basal
friction angle of the same debris in contact with a uniformly sloping bed. Differences between the values of ϕ
and ϕtread can greatly influence the results of numerical simulations that use unsmoothed digital elevation
model topography to calculate the stability or dynamics of debris masses on slopes.

1. Introduction

Calculations of stresses that act on the base of sloping granular debris masses serve several important pur-
poses. For example, calculations of basal shear stress are necessary for evaluating the balance of forces that
controls downslope debris acceleration, irrespective of whether the debris mass is in motion or at rest. They
are also required for assessing the potential for bed erosion and for evaluating the propensity of moving
debris to radiate seismic energy into the bed. Calculations of basal normal stress are equally important—
in part because normal stress limits shear stress when basal Coulomb friction is fully engaged (i.e., when
τ = σ tan ϕ is satisfied, where τ is basal shear stress, σ is basal normal stress, and ϕ is a basal friction angle
that implicitly accounts for pore pressure effects). However, except in one‐dimensional problems, nomethod
exists for calculating τ and σ exactly because the governing balance equations are insufficient for determin-
ing two‐ and three‐dimensional stress states. Thus, for 2‐D and 3‐D geometries, constitutive assumptions or
other analogous assumptions are required to obtain analytical formulas or numerical results that estimate
values of τ and σ.

In this paper we describe the derivation, implementation, and experimental testing of new algebraic formu-
las for estimating shear and normal stresses at the base of 2‐D debris masses in states of static or dynamic
mechanical equilibrium on slopes. (In disequilibrium states these basal stresses can be modified by accelera-
tions that change the apparent weight of the debris, but that is a distinct topic which we do not address in this
paper.) Our new formulas include a single, depth‐averaged tuning parameter, a lateral pressure coefficient
denoted by κ. We show that for the debris geometries and compositions in our experiments, a fixed value
κ = 0.7 yields estimates of τ, σ, and τ/σ that are more accurate than estimates obtained from widely used
infinite‐slope and shallow‐debris equations.

Our new basal stress formulas can be implemented precisely in depth‐averaged models that employ
Earth‐centered, rectangular Cartesian coordinates, irrespective of the steepness of local bed or surface
slopes. However, specialized versions of the formulas apply if conventional, unsmoothed digital elevation
models (DEMs) are used to depict topographic and basal slip surfaces as “staircase” functions that have
constant elevation values in individual DEM cells. Such staircase surfaces represent mathematical abstrac-
tions rather than real physical surfaces, but they are nonetheless relevant because DEMs provide the
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baseline topographic data for many numerical simulations of mass movements. Indeed, computations that
use DEM data directly to compute τ, σ, and τ/σ can hold practical advantages over computations that require
preliminary processing to smooth the DEM data. DEM staircase topography is especially well suited for use
in numerical simulations that employ finite‐volume solution methods and computational cells that coincide
with DEM cells. Moreover, use of unsmoothed DEM topography may have its greatest advantages in finite‐
volume computations that employ adaptive mesh refinement to facilitate efficient numerical simulations in
large domains, which may include billions of DEM cells (LeVeque et al., 2011). In such cases use of
unsmoothed DEM data eliminates the need to recompute base topography as the computational grid evolves
(e.g., George et al., 2017; Iverson & George, 2016).

Our specialized basal stress formulas for staircase topography lead to the inference that the apparent basal
Coulomb friction angle of debris resting on flat‐bottomed DEM cells differs from the Coulomb friction angle
of the same debris in contact with a smoothly sloping bed. The difference arises from a purely geometric
effect associated with use of a vertically depth‐averaged stress state and staircase topography, and it does
not imply that any revisions are warranted in physical theories of static or rate‐dependent Coulomb friction.
On the other hand, the distinction between true and apparent Coulomb friction is relevant regardless of the
particular friction theory employed.

2. Context

To place our new basal stress equations in context, it is useful first to review some key features of some
well‐established basal stress equations. For example, the widely used infinite‐slope equations apply to an
infinitely extensive planar slab of material that has a uniform bed‐normal thickness, h, uniform vertical
thickness, H, and uniform angle of inclination, β = θ, where β is the surface slope angle and θ is the basal
slope angle. In this case the stress state is strictly one‐dimensional, and the basal normal stress and shear
stress obey the equations

σ ¼ ρgh cosθ ¼ ρgH cos2θ (1)

and

τ ¼ ρgh sinθ ¼ ρgH cosθ sinθ; (2)

in which ρ is the debris bulk density and g is the magnitude of gravitational acceleration. These infinite‐slope
basal stress equations are exact, but only if every geometrical assumption noted above is satisfied. However,
they also provide zero‐order approximations for cases in which the debris geometry is more complex.

For a layer of debris of smoothly varying thickness h(x), a widely used first‐order correction to the infinite‐
slope basal shear stress equation (2) is obtained by integrating a 2‐DCauchy stress field equation through the
debris thickness and assuming that the longitudinal normal stress is proportional to the 1‐D geostatic basal
normal stress defined by (1) (e.g., Savage & Hutter, 1989). Appendix A explains the details of this procedure,
which yields the result

τ ¼ ρgh sinθ− κ ρgh cosθ ∂h=∂xð Þ; (3)

where x is a bed‐parallel coordinate pointing in the direction of steepest descent and κ is a lateral pressure
coefficient that satisfies κ = 1 if the stress state is hydrostatic but may differ significantly from 1 for either
dry or wet granular debris (Iverson & Denlinger, 2001; Hungr, 2008; Savage & Hutter, 1989).

Precise definitions and values of κ can be specified if particular constitutive assumptions are used (such as
Coulomb yield behavior or linearly elastic behavior), but here we avoid such assumptions and treat κ simply
as a tuning parameter. This treatment makes our definition of κ similar to that of an “Earth pressure
coefficient at rest,” as is commonly employed in soil mechanics (e.g., Fang et al., 1997). However, our usage
of κ departs somewhat from soil mechanics convention because in (3) κ implicitly includes the effects of
intergranular fluid as well as solid grains.

Shallow‐debris scaling shows that the correction term containing ∂h/∂x in (3) is of order bh=bl, where bh is the

characteristic slope‐normal thickness of a finite debris mass and bl is its characteristic slope‐parallel length
(Savage & Hutter, 1989). As bh=bl approaches 0, the correction term containing ∂h/∂x generally has
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increasing accuracy but diminishing importance. On the other hand, if bh=bl→1 applies, then the accuracy of the correction term generally
degrades. An additional correction term must be added to (3) in appli-
cations that use a curvilinear x coordinate that is fitted to a smoothly
curving bed (e.g., Bouchut et al., 2003; Keller, 2003; Savage & Hutter,
1991), but subsequent sections of this paper focus on applications that
use rectilinear coordinates that are not aligned with the bed.

Although (3) is defensible from a theoretical as well as practical perspec-
tive, it is by no means exact, and several important issues arise in its
application to geophysical problems. The most basic of these issues stems
from the fact that predictions of (3) have seldom, if ever, been subject to
direct experimental tests that entail measurements of shear stresses
beneath slopingmasses of debris with spatially variable thicknesses. A sec-
ond and equally fundamental issue is that models that employ the first‐
order correction term −κρgh cos θ(∂h/∂x) in calculations of τ commonly
omit any analogous correction term in calculations of σ (e.g., Hungr,
2008; Iverson & Denlinger, 2001; Savage & Hutter, 1989). They instead
employ the zero‐order infinite‐slope approximation expressed by (1).
Consequently, values of τ/σ calculated to assess the potential engagement
of basal Coulomb frictionmight err systematically due to an inconsistency
in the methods used to estimate τ and σ. A third issue is that values of κ in
(3) are generally poorly constrained—except by rather idealized theoreti-
cal considerations (e.g., Hungr, 2008; Iverson, 1997). Finally, an issue
exists in geophysical applications that use topography discretized in

DEMs of irregular terrain. In such applications the elevation of each DEM cell defines a horizontal surface
(or “tread”) in a staircase function, and on each tread surface θ = 0 locally applies. However, setting θ = 0
in (1) and (3) does not account for the overall slope of the staircase topography, implying that additional
mechanical effects must be considered. Subsequent sections of this paper address each of these issues by
deriving and testing more‐general formulas that can be used in place of (1) and (3).

3. Mechanics

Our derivation employs a Cartesian coordinate system in which Z is vertical and X is horizontal, as is used in
most DEMs. It considers basal stresses produced by balanced forces acting on a vertical column of debris of
variable thickness,H(X), where X lies within the same vertical plane as Z and the slope‐parallel coordinate, x
(Figure 1). Although the derivation considers a 3‐D debris column, it assumes that forces acting normal to
the vertical plane depicted in Figure 1 have no net effect on mechanical equilibrium of the column, and
in this sense it assumes that a two‐dimensional stress state applies. It also omits shear stresses on the vertical
sides of the column that might act to distort it as well as rotational moments that might act to topple it. Our
derivation consequently focuses on the potential for purely translational motion of the column parallel to a
locally planar bed sloping at an angle θ (Figure 1). (In Appendix B we derive additional equations that
describe moment equilibrium that governs the potential for rotational motion and consequent toppling of
the column. For realistic values of physical variables, the equations imply that translational motion gener-
ally supersedes rotation.)

3.1. Basal Stress Equations

Our analysis focuses on basal stresses that develop in reaction to vertical forces caused by the weight of over-
lying material and horizontal forces exerted by adjacent debris upslope and downslope. It assumes that each
of these forces is proportional to the depth‐averaged debris bulk density defined by

ρ ¼ 1

H
∫
Ztop

Zbot

ρs 1−nð Þ þ ρf n
h i

dZ; (4)

whereH is the mean vertical thickness of a debris column with a mean base elevation Zbot and mean surface
elevation Ztop, ρs is the mass density of solid grains, ρf is the mass density of pore fluid (including both water

Figure 1. Schematic cross‐sectional geometry of a vertical column of debris
(shaded) contained within a larger prism of debris resting on a bed sloping
at an angle θ with respect to the horizontal X axis. The column's local
vertical thickness is H(X), and its mean vertical thickness is H ¼ Ztop−Zbot.
Its local bed‐normal thickness is h(x), and its surface slope angle is β, which
generally differs from θ. Both the x‐z and X‐Z coordinates systems are
shown.
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and air), and n is the debris porosity (Figure 1). The weightW of the column is given byW ¼ ρgHA, where g
is the magnitude of gravitational acceleration and A is the horizontal cross‐sectional area of the column. The
contributions of W to the basal normal stress σ and basal shear stress τ are found by resolving W into
bed‐normal and bed‐parallel components and dividing each of these components by the area of the planar
bed surface contacted by the column, A/ cos θ, where θ is the angle of bed inclination. Thus, the contribu-
tions of W to σ and τ are given by

σW ¼ ρgH cos2θ (5)

and

τW ¼ ρgH cosθ sinθ: (6)

If the debris thicknessH is constant, such thatH ¼ H applies everywhere, then these basal stress state equa-
tions reduce to the infinite‐slope equations, (1) and (2).

If the value of H differs on the upslope and downslope faces of the column, then σ and τ are influenced by a
net horizontal force exerted by adjacent material upslope and downslope. The weight of this material
produces a depth‐averaged lateral pressure against vertical faces of the column that can be expressed as
(1/2)κρgH, where κ is a lateral pressure coefficient. This pressure exerts a local depth‐averaged horizontal
normal force F = (1/2)κρgH2B, where B is the cross‐slope breadth of the column and HB is the surface area
of a vertical face of the column, which is normal to X. Thus, if H(X) is continuously differentiable, then the
net horizontal force acting on the column is expressed by Fnet = − ∂[(1/2)κρgH2BL]/∂X, where L is the
horizontal length of the column in the X direction, such that BL = A applies. If the values of κ, ρ, g, B, L,
and θ are not functions of X, then the expression for Fnet reduces to Fnet ¼ − κ ρgAH ∂H=∂Xð Þ, which can

also be written asFnet ¼ − κ ρgAH tanθ− tanβð Þ, where β is the local angle of inclination of the surface slope
(Figure 1). The contributions of Fnet to σ and τ are found by resolving Fnet into bed‐normal and bed‐parallel
components and dividing these components by the area of the sloping basal surface contacted by the
column, A/ cos θ. The contributions of Fnet to σ and τ are thus found to be

σF ¼ κρgH cosθ sinθ tanθ− tanβð Þ (7)

and

τF ¼ −κρgH cos2θ tanθ− tanβð Þ: (8)

The total normal stress σ and total shear stress τ acting on the sloping base of the column are given by the
sums σ = σW+σF and τ = τW+τF. Use of (5)–(8) to evaluate these sums yields

σ ¼ ρgH cosθ cosθþ κ sinθ tanθ− tanβð Þ½ � (9)

and

τ ¼ ρgH cosθ sinθ−κ cosθ tanθ− tanβð Þ½ �: (10)

These are our new basal stress equations, which we have also derived by using a more rigorous—but
lengthier—method that involves integrating the boundary stresses around the perimeter of the shaded
domain shown in Figure 1. The equations indicate that positive longitudinal thickness gradients, which
are expressed by tanθ − tan β > 0 (or, equivalently, by ∂H/∂X > 0), act simultaneously to increase basal
normal stress and reduce basal shear stress.

For a special case in which the upper surface of the debris is horizontal (i.e., β = 0), (9) and (10) reduce to

σ ¼ ρgH cos2θþ κ sin2θ
� �

(11)

and
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τ ¼ 1−κð ÞρgH cosθ sinθ: (12)

These equations predict that σ ¼ ρgH and τ = 0 apply for a hydrostatically
stressed mass (i.e., with κ= 1), regardless of the bed slope angle. However,
they predict that a more complex basal stress state exists if κ ≠ 1 as well as
β = 0 applies.

Another consideration in use of (9) and (10) arises from the fact that
predicted values of σ become negative if the condition
tanβ > tan θ+1/(κ tan θ) applies and predicted values of τ become nega-
tive if the condition tanβ < tan θ − (1/κ) tan θ applies. Negative τ
values merely indicate that the basal shear stress imposed by debris
with a sufficiently steep adverse surface slope acts in the negative x
direction of Figure 1. On the other hand, negative σ values are physi-
cally implausible unless the debris is bonded to its bed by cohesion.
Debris geometries that lead to conditions with σ < 0 are quite atypical,
however. Graphs of the equation tanβ = tan θ+1/(κ tan θ) show that
for κ = 1 (which is the maximum plausible value of κ in many circum-
stances, as discussed in section 3.4), a condition with σ < 0 can exist
only if β > 63∘ applies, which describes a debris surface slope that is
steeper than the maximum slope generally attainable by granular deb-
ris. Failure by toppling (due to violation of moment equilibrium) can
also preclude the development of such steep surface slopes
(Appendix B).

3.2. Relationship of (9) and (10) to (1) and (3)

The physical implications of (9) and (10) are distinct from those of (1) and
(3). Unlike derivations of (1) and (3), our derivation of (9) and (10)
involves no assumptions that restrict the magnitudes of the slope angles

θ and β, or of their difference, θ − β. Consequently, (9) and (10) cannot be obtained from (1) and (3) through
use of a coordinate transformation. Instead, the derivation of (9) and (10) involves the specific set of assump-
tions described in the preceding paragraphs.

The shallow‐debris basal stress equations, (1) and (3), provide approximations of (9) and (10) that become
better as longitudinal gradients in debris thicknesses become smaller. The geometric relationships illustrated
in Figure 1 indicate that the exact expressions h =H[cosθ+ sin θ tan (θ − β)] and ∂h/∂x = tan (θ− β) can be
used to rewrite (1) and (3) withH rather than h as the dependent variable. However, the resulting forms of (1)
and (3) match (9) and (10) only in the limit θ − β → 0. Use of the first‐order correction term in (3),
−κρgh cos θ(∂h/∂x), nevertheless bolsters that equation's accuracy in approximating (9), particularly if the
value of θ − β is small enough that ∂h/∂x = tan (θ − β) ≈ tan θ − tan β applies.

3.3. Implementation of (9) and (10) With DEM Topography

Equations (9) and (10) provide estimates of stresses acting on a basal boundary surface sloping at any angle, but
use of the equations in numerical simulations involves an additional consideration if sloping basal topography
with diverse elevations b(X) is represented by a series of discrete steps, as it is in a DEM (Figure 2). Collectively
the discrete steps forma sloping staircase function, but each individual step has a horizontal surface (i.e., a stair-
case tread) on which b(X) is constant and θ = 0 locally applies. Thus, on individual horizontal treads, (9) and
(10) reduce to σZZ = ρgHm and τZX = κρgHm tan β, where the subscripts ZZ and ZX indicate that σZZ and τZX
act on horizontal tread surfaces that are normal toZ, andHm denotes themean vertical thickness of debris over-
lying an individual tread. (Note that for consistency the ground surface topography illustrated in Figure 2 is also
depicted as a staircase function, but the form of this function has no effect on our basal stress calculations
because the ground surface is treated as a stress‐free boundary, irrespective of its shape.)

If a prism of debris rests on half of each of two adjacent treads and thereby spans a representative section of
the staircase slope (i.e., the shaded region in Figure 2), then integrating the equations σZZ = ρgHm and

Figure 2. Schematic cross‐sectional geometry of a vertical column of debris
(shaded) that is bounded at its base and surface by digital elevation model
staircase topography. The column rests on half of each of two adjacent
staircase treads. The horizontal treads and the column each have length L in
the X direction. The vertical height of the staircase riser separating two
adjacent treads is given by b(X1) − b(X2) = L tan θ, where b(X) is the local
tread elevation and θ is the angle of the basal staircase slope. The mean
ground surface slope angle is β, which generally differs from θ.
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τZX = κρgHm tan β in the X direction across this span shows that the total boundary normal force FZZ and
boundary shear force FZX exerted on the debris prism by the treads are given by

FZZ ¼ ρgHLB (13)

and

FZX ¼ −κρgHLB tanβ; (14)

where H is the mean thickness of the debris prism overlying the two treads, L is the prism length, and B
is its cross‐slope breadth—geometric definitions that are the same as those used in the derivation of (9)
and (10).

Two additional forces influence the mechanical equilibrium of a prism of debris resting on half of each of
two adjacent treads of a sloping staircase (Figure 2). One is the net horizontal driving force due to the differ-
ence in pressures acting on the upslope and downslope faces of the prism, Fnet. The analysis in section 3.1
showed that this force is described by

Fnet ¼ −κρgHLB tanθ− tanβð Þ: (15)

The other force is a horizontally acting normal force exerted by the vertical staircase surface that joins the
two adjacent treads, known as a staircase “riser” (Figure 2). This force is described by

FXX ¼ κρgHLB tanθ; (16)

whereκρgH is the mean value of the horizontal normal stress exerted by the riser, LB tan θ is the surface area
of the riser, and tanθ is the mean staircase slope averaged over the horizontal distance L (Figure 2).
Equation (16) shows that the force FXX partially counteracts Fnet. As a consequence, the total horizontal driv-
ing force acting on the vertical surfaces of the prism of debris shown in Figure (2) is found by adding (15) and
(16) to obtain

Ftot ¼ κρgHLB tanβ: (17)

Thus, at mechanical equilibrium, the horizontal driving force given by (17) precisely counteracts the
horizontal basal shear force given by (14).

The system of basal boundary forces described by (13), (14), and (16) is consistent with the basal stresses
described by (9) and (10). This consistency can be demonstrated by considering a system of boundary forces
that are equivalent to (13), (14), and (16) but which act on a basal boundary sloping uniformly at the angle θ.
These forces are found by resolving the force vectors FZZ, FZX, and FXX into components acting normal and
parallel to the sloping boundary and summing their contributions to obtain the total boundary normal force

Fnormal ¼ FZZ cosθ−FZX sinθþ FXX sinθ (18)

and shear force

Fshear ¼ FZZ sinθþ FZX cosθ−FXX cosθ: (19)

Substituting (13), (14), and (16) into (18) and (19) then yields

Fnormal ¼ ρgHLB cosθþ κ sinθ tanθ− tanβð Þ½ � (20)

and

Fshear ¼ ρgHLB sinθ−κ cosθ tanθ− tanβð Þ½ �: (21)

Finally, if Fnormal and Fshear are converted to stresses by dividing (20) and (21) by the surface area of the
sloping surface on which the forces act, LB/ cos θ, then the resulting equations match (9) and (10) exactly.
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The foregoing analysis demonstrates two important points. First, (13) and (14) provide suitable descriptions
of the basal normal and shear forces that act on the horizontal treads of sloping staircase topography as
portrayed in DEMs. The equations apply at any scale—regardless of how finely staircase topography is
discretized. Equally important, (9) and (10) provide compatible descriptions of the stresses that act on a
smoothly sloping bed that is not discretized as a staircase.

3.4. Constraints on κ Values

The lateral pressure coefficient κ appears in many of the preceding equations and characterizes the
combined effects of the debris' solid and fluid constituents on horizontal normal stresses. The solid and fluid
constituents generally have distinct influences on κ, and these influences can differ for static and
deforming states. Here we define κ as the ratio of the depth‐averaged steady state horizontal total normal
stress, (1/2)κρgH, to the depth‐averaged steady state vertical total normal stress, (1/2)ρgH.

To estimate values of κ for static or quasi‐static solid‐fluid debris mixtures, we first relate κ to the lateral stress
coefficient for a single‐phase granular solid, κs. Following the rationale of Iverson and Denlinger (2001),
which employs Terzaghi's effective‐stress principle for water‐saturated granular debris (Lade & De Boer,
1997), we use the relationship

κ ¼ κs 1−
p

ρgH

� �
þ p
ρgH

; (22)

where p denotes the basal pore‐fluid pressure. This equation implies that the granular solid phase produces a
depth‐averaged lateral effective stress equal to (1/2)κs(1 − p)ρgH, while the fluid phase produces a depth‐
averaged lateral stress equal to (1/2)p. For fully liquefied states with p = ρgH, (22) reduces to κ = 1, and
for fully dewatered states with p = 0, it reduces to κ = κs.

The implications of (22) can be clarified further by considering a case in which the basal pore pressure is
hydrostatic (i.e., p = ρfgH) and (22) reduces to κ = κs+(1 − κs)(ρf/ρ). Combining this equation with the
definition of ρ given in (4) leads to the result

κ ¼
κs 1−nð Þ ρs−ρf

� �
=ρf

h i
þ 1

1−nð Þ ρs−ρf
� �

=ρf
h i

þ 1
: (23)

The plausible range of κ values described by (23) is quite well constrained. Extensive experimentation by
Fang et al. (1997) has shown that the full‐scale range of κs values for sloping prisms of loose granular mate-
rials at rest—without fully engaged frictional resistance—is approximately 0.2 to 1. The range of plausible
values of (1 − n)(ρs − ρf)/ρf for typical grain‐water mixtures mantling slopes on Earth's surface is roughly
0.4 to 1.2. Use of these ranges of parameter values in (23) shows that the most plausible values of κ for the
sediment‐water debris mixtures used in our experiments range from roughly 0.5 to 1.

4. Experimental Methods and Materials

Six large‐scale experiments conducted at the USGS debris‐flow flume in 2016 afforded an opportunity to test
the predictions of (9) and (10). In three pairs of replicate experiments, we used a diesel‐powered front‐end
loader and manual shoveling to place prisms consisting of either 10 or 8 m3 of static, loose, moist debris
behind a vertical steel headgate near the top of the flume, which slopes at an angle θ = 31∘ (Figure 3).
The 10‐m3 debris prisms were distinguished from the 8‐m3 debris prisms mostly by their steeper surface
slopes (β = 17∘ for the 10‐m3 prisms versus β = 9∘ for the 8‐m3 prisms). Each debris prism was 1.9 m high
where it rested against the upslope face of the closed headgate, and each was approximately 4.7 m long
where it contacted the flume bed, which consisted of broom‐finished concrete with a surface texture similar
to that of standard sidewalks (Figure 3). The prisms were uniformly 2 m wide and were bounded laterally by
the vertical flume sidewalls, which consisted of smooth‐finished concrete.

4.1. Debris Composition, Initial Bulk Density, and Initial Water Content

Each experiment used a sand‐gravel (SG) debris mixture composed of 66% well‐rounded gravel, 33% river
sand, and 1% finer grains by dry weight. Iverson et al. (2010) provided a detailed characterization of the
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grain‐size distribution and geotechnical properties of this SG mixture,
which had a static internal friction angle ϕint = 39.3 ± 3° and a static basal
friction angle ϕbed = 28 ± 0.8° on the broom‐finished concrete bed. The
sand‐sized grains in the debris consisted of rock fragments with diverse
mineralogical compositions representative of their provenance in the
varied geologic terranes of theWillamette River watershed upstream from
Eugene, Oregon. We assumed that ρsand= 2,650 kg/m3 was a suitable
value for the mean density of these and finer grains. The gravel clasts
consisted of 85% basalt and 15% pyroclastic and metasedimentary rocks
by mass. We made measurements on 109 compositionally representative
gravel clasts using a Mettler Toledo Excellence XP/XS density kit, which
yielded a mean and standard deviation density ρgrav = 2,503 ± 196
kg/m3 for these grains.

The debris mixture used in two of the experiments also included approxi-
mately 560 randomly positioned angular cobbles, which we added during
placement of the debris behind the flume headgate (Table 1). The indivi-
dual cobbles had mean volumes of 0.00024 m3 and mean masses of 0.56
kg, based on measurements of 93 individual clasts. In our calculations
of debris bulk density and porosity, we disregarded the presence of these
cobbles, because they were not included in our bulk density samples
and they collectively represented a total volume of only ~0.13 m3 in each
experiment. Nevertheless, the presence of the cobbles was noteworthy
from a mechanical standpoint.

We determined the bulk densities and water contents of the initially moist
SG debris mixtures positioned behind the headgate by using the excava-
tion, drying, and weighing technique detailed by Iverson et al. (2010). A
total of 24 samples (four per experiment) were analyzed to obtain a mean
and standard deviation dry bulk density ρdry= 1,583 ± 157 kg/m3 and a
mean and standard deviation gravimetric water content wg = 0.061 ±
0.011 (Table 1). These quantities are used to calculate the mean debris
porosity n and mean volumetric water content wv from the easily
derived formulas

n ¼ 1−
ρdry
ρsand

Msand

Mdry
þ ρdry
ρgrav

Mgrav

Mdry

 !
(24)

and

wv ¼
ρdry
ρf

wg; (25)

whereMdry is the dried samplemass,Msand/Mdry = 0.34 is themass fraction of sand and finer sediment in the
dried SG mixture, Mgrav/Mdry = 0.66 is the mass fraction of gravel clasts in the dried mixture, ρf = 1,000
kg/m3 is the mass density of water, ρsand= 2,650 kg/m3 is the sand gain density, and ρgrav = 2,503 kg/m3

is the gravel grain density. Use of these values in (24) and (25) along with the data summarized in Table 1
yields a mean debris porosity n ≈ 0.38 and mean volumetric water content wv≈ 0.096. Thus, roughly 25%
of the pore space in the initially moist SG samples was filled with water.

4.2. Debris Wetting, Final Bulk Density, and Final Water Content

After placement and sampling of the debris prisms, we wetted them by applying water via metered
subsurface conduits and surface sprinklers. Our goal was to establish completely saturated debris prisms
with sloping water tables coincident with the prisms' upper surfaces. This goal was realized in the experi-
ments with 8‐m3 debris prisms, but it was more difficult to attain in the experiments with 10‐m3 debris

Figure 3. Schematic vertical cross‐sectional geometries of (a) the flume
headgate area, (b) the 8‐m3 debris prisms, and (c) the 10‐m3 debris
prisms used in the experiments. The centroids of the flush‐mounted sensor
plates used to measure basal shear stress and basal normal stress were
located at x = − 2.23 m and x = − 2.85 m, respectively, where x is aligned
parallel to the flume bed.
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prisms owing to their steeper surface slopes. Thus, surficial layers of partially saturated debris that averaged
several centimeters in thickness persisted in the 10‐m3 debris prisms. On the other hand, the 10‐m3 debris
prisms also developed ponds at their upper ends, which each contained about ~0.3 m3 of standing
water (Figure 3c).

As a sloping water table developed in each debris prism, effluent groundwater began to pool against the
upper face of the headgate. Metered drainage of this pooled water occurred through ports installed near
the top of the headgate, but no other significant drainage occurred as water was applied. Data and simple
calculations therefore yielded complete volumetric water budgets for the debris prisms (Table 2). In con-
structing these water budgets, it was necessary to account for the initial ambient water content of the loosely
packed debris as well as its subsequent settlement during water application.

Spot measurements along the flume sidewalls indicated that settlement caused a ~6% reduction in the total
volume of each debris prism during watering. This 6% reduction in total volume implies that a 6% increase
occurred in the mean dry bulk density ρdry and that a 10% reduction occurred in the mean total porosity n.
From these modifications we infer that the mean values ρdry ≈ 1,678 kg/m3 and n ≈ 0.34 applied after
watering of the debris was completed. Taken in conjunction with the volumetric water contents listed in
the last column of Table 2, the value n ≈ 0.34 also implies that the settled debris prisms were almost entirely
saturated with water. The settled debris with ρdry ≈ 1,678 kg/m3 and n ≈ 0.34 would have had a total bulk
density ρ = ρdry+nρf ≈ 2,018 kg/m3 if it had been 100% saturated with water having a density ρf = 1,000
kg/m3. We consequently adopt the rounded and slightly smaller value ρ = 2,000 kg/m3 as suitable for
purposes of calculating theoretical values of basal stresses.

4.3. Basal Stress Measurements

Wemademeasurements of basal stresses using OmegaModel LC S‐beam load cells that were rigidly coupled
to 500‐cm2 circular steel plates that served as the sensing elements in contact with basal debris. The normal
stress sensors had a relatively simple configuration like that illustrated by Major and Iverson (1999), but the
shear stress sensors had a more complex configuration that used roller bearings to mechanically decouple
shear loads from normal loads (Figure 4). Each sensor plate was mounted flush with the flume bed and
was roughened with a sand‐textured finish to match the roughness of the adjacent concrete bed. The plates
were also fitted with soft rubber gaskets along their perimeters to inhibit jamming with sediment.

The shear‐ and normal‐stress sensors were each installed along the flume centerline, but they were
positioned at slightly different distances upslope from the flume headgate. Measured parallel to the flume
bed, the shear‐stress sensor was centered at x = − 2.23 m while the normal‐stress sensor was centered at
x = − 2.85 m, where negative values of x indicate distances upslope from the foot of the headgate
(Figure 3). As a result of these differing sensor positions, the shear‐ and normal‐stress sensors had different
burial depths. Measured vertically, these depths initially were 0.82 m for the normal‐stress sensor and 1.06 m
for the shear‐stress sensor beneath the 8‐m3 sediment prisms, and they were 1.18 m for the normal‐stress
sensor and 1.34 m for the shear‐stress sensor beneath the 10‐m3 debris prisms. However, after settlement

Table 1
Bulk Densities, Porosities, and Water Contents of Debris Samples (Four per Experiment) Collected After Placing Debris Behind Flume Headgate but Prior to
Adding Water

Experiment date, initial
debris volume, and
debris compositiona

Moist bulk density,
mean and standard
deviation (kg/m3)

Dry bulk density ρdry,
mean and standard
deviation (kg/m3)

Gravimetric water
contentb wg, mean

and standard deviation
Mean

porosity n
Mean volumetric
water content wv

Mean percent
saturation
of porosity

14 June 2016, 8 m3, SG 1,842 ± 111 1,740 ± 99 0.059 ± 0.0038 0.32 0.10 31
15 June 2016, 8 m3, SG 1,516 ± 108 1,408 ± 90 0.076 ± 0.0087 0.45 0.11 24
16 June 2016, 8 m3, SG + cobbles 1,588 ± 115 1,498 ± 108 0.060 ± 0.0085 0.41 0.090 22
21 June 2016, 8 m3, SG + cobbles 1,626 ± 98 1,525 ± 92 0.065 ± 0.0018 0.40 0.099 25
22 June 2016, 10 m3, SG 1,837 ± 29 1,760 ± 27 0.042 ± 0.0026 0.31 0.074 24
23 June 2016, 10 m3, SG 1,665 ± 114 1,568 ± 110 0.061 ± 0.0040 0.39 0.096 25
Mean values for 24 samples 1,679 ± 158 1,583 ± 157 0.061 ± 0.011 0.38 0.095 25

a
“SG” denotes a sand‐gravel sediment mixture that was characterized in detail by Iverson et al. (2010); “cobbles” are characterized in detail in this paper.
bGravimetric water content is defined as mass of water divided by mass of dry solid grains.
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of the debris occurred in response to watering, these burial depths decreased by approximately 6 to 7 cm. The
resulting final burial depths are listed in Table 3. Owing to irregularities in the settled sediment surface, the
listed values might err by as much as ± 2 cm.

We calibrated the stress sensors in situ by placing a series of static weights directly on the sensor plates and
accounting for the effect of the 31° bed slope and 500 cm2 plate area when converting weights to stresses.
During calibrations, the sensors were connected electronically to the same digital data acquisition system
that was used to collect experimental data. We repeated the calibrations several times over the course of
our experiments and found negligible drift of sensor output.

During both calibrations and experiments, we digitally logged the sensor output voltages at a sampling rate
of 1,000 Hz. Then, following conversion of the logged voltages to physical units, we low‐pass filtered the data
using a time‐domain digital RC filter with a cutoff frequency of 30 Hz. We subsequently decimated the fil-
tered data to 100 Hz before we used a series of 500 data points to compute the mean values and standard

deviations of the stress measurements we present here. The original, unfil-
tered 1,000‐Hz data were archived by Iverson and Logan (2017) as part of a
larger data set. The data we utilize here were collected during the time
interval from t = − 5 s to t = 0 s identified in that larger data set.

5. Results

Our basal stress measurements, which are summarized in Table 3, gener-
ally exhibited a high degree of reproducibility between replicate pairs of
experiments. The reproducibility was particularly good in view of the fact
that the debris itself probably had variable packing configurations as a
result of some randomness in the distributions of voids and force chains.
As expected, the normal and shear stresses measured beneath the 10‐m3

debris prisms were significantly larger than those measured beneath the
8‐m3 debris prisms. In the experiments with 8‐m3 prisms, the debris
containing large cobbles exerted stresses that were typically—but not
universally—slightly larger than those exerted by the debris that
lacked cobbles. These qualitative findings are consistent with expectations
based on the thicknesses and compositions of the debris used in the
various experiments.

5.1. Tests of Basal Stresses Predicted by (9) and (10)

Our most fundamental results compare the measured basal stress values
listed in Table 3 with theoretical values of σ and τ predicted using equa-
tions (9) and (10). The predictions use the value ρ = 2,000 inferred from
the measurements described in section 4.2, and they use the measured
values of the geometric quantities listed in Table 3 for each experiment

Table 2
Volumetric Data Summarizing Prewatering and Postwatering States of Debris Prisms

Experiment date
Debris

compositiona
Initial volume

of loaded debris (m3)

Initial water
volume in
debrisb (m3)

Net volume of
water added to
debrisc (m3)

Settled debris volume
after addition of

water (m3)

Debris volumetric water content
(total water volume ÷ settled debris
volume) after water application

14 June 2016 SG 8.0 0.80 1.38 7.5 0.29
15 June 2016 SG 8.0 0.88 1.57 7.5 0.33
16 June 2016 SG + cobbles 8.0 0.72 1.70 7.5 0.32
21 June 2016 SG + cobbles 8.0 0.79 1.70 7.5 0.33
22 June 2016 SG 10.0 0.74 2.56 9.4 0.35
23 June 2016 SG 10.0 0.96 2.46 9.4 0.36

a
“SG” denotes a sand‐gravel sediment mixture that was characterized in detail by Iverson et al. (2010); “cobbles” are characterized in detail in this paper. bFor
each experiment initial water volumes were calculated from the mean water contents measured in four sediment samples, as summarized in Table 1. cIncludes
~0.3 m3 of ponded surface water in experiments of 22 June 2016 and 23 June 2016.

Figure 4. Schematic vertical cross sections illustrating the configuration of
basal shear stress sensors viewed in a sloping reference frame aligned with
the x coordinate of Figure 3.
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and stress sensor. The suite of predictions uses lateral pressure coefficients ranging from κ = 0 (which
reduces (9) and (10) to the infinite‐slope equations (1) and (2)) to κ = 1 (which applies to a hydrostatically
stressed debris mass). The range 0 ≤ κ ≤ 1 also encompasses the range identified in section 3.4 as most
physically plausible (0.5 ≤ κ ≤ 1). For this range of κ values, Figure 5a compares predicted and measured
values of σ by plotting the prediction errors calculated using the formula

percent error ¼ σpred−σmeas

σmeas
×100; (26)

where σpred and σmeas denote the predicted and measured values of σ, respectively. An analogous formula is
used to calculate the prediction errors for τ, which are plotted in Figure 5b.

The central finding illustrated in Figures 5a and 5b is that the value κ = 0.7 provides the best overall predic-
tions of the measured values of σ and τ. This value of κ does not necessarily provide the best prediction of
each individual measurement, but a mean error of only 2.8% results from using (9) with κ = 0.7 to predict
measured values of σ, and amean error of only 12.2% results from using (10) with κ= 0.7 to predict measured
values of τ. No alternative value of κ yields such consistently accurate predictions. (We specify κ values with
only single‐digit precision because, in our view, the scatter of the data makes further refinement of κ
values unwarranted.)

By contrast, very inaccurate predictions are obtained by disregarding the effect of the difference between the
surface slope angle β and bed slope angle θ and instead using the infinite‐slope approximation, which yields
the results shown for κ = 0 in Figure 5. On average, the infinite‐slope equations (1) and (2) yield predictions
of σ that are too small by 16.3% and predictions of τ that are too large by 87.7%.

Finally, among the results illustrated in Figure 5a, one case constitutes a clear outlier that increases the
mean prediction error: Predictions of the value of σ measured on 21 June 2016 are universally too small,
regardless of the value of κ used in (9). For this case the prediction errors are so skewed and are also so
inconsistent with other prediction errors summarized in Figure 5a that we believe the value of σ mea-
sured on 21 June 2016 was aberrant. A wide variety of possible explanations for this aberration exist,
but a likely explanation is that one or more of the large cobbles present in the debris in this experiment
lodged directly against the normal‐stress sensor plate. Such lodgment could have resulted in a major
force chain impinging on the plate and locally amplifying the basal normal stress. Such a possibility
warrants caution when interpreting or calculating values of stresses at the base of heterogeneous
debris masses.

5.2. Tests of Basal Stress Ratios Predicted by Alternative Models

Our experimental measurements of τ and σ provide data that enable tests of three sets of predictions of the
basal stress ratio τ/σ, which holds particular significance owing to its role in evaluating basal Coulomb fric-
tion in granular masses. Each of the predictions takes into account that fact that the thickness of the debris
where we measured τ, denoted by Hτ, differed from the thickness of the debris where we measured σ,
denoted by Hσ. For these circumstances the infinite‐slope equations (1) and (2) predict that

Table 3
Measured Values of Basal Normal Stress, σ, Basal Shear Stress, τ, and Ancillary Geometric Quantities

Experiment date, initial debris
volume, and debris composition θ (deg) β (deg)

Normal stress sensor depth,
Hσ (m)

Measured value of
σ ± 1 standard
deviation (Pa)

Shear stress sensor depth,
Hτ (m)

Measured value of
τ ± 1 standard
deviation (Pa)

14 June 2016, 8 m3, SG 31 9 0.76 12,949 ± 20 1.00 3,848 ± 20
15 June 2016, 8 m3, SG 31 9 0.76 12,910 ± 20 1.00 4,664 ± 17
16 June 2016, 8 m3, SG + cobbles 31 9 0.76 13,296 ± 19 1.00 4,849 ± 14
21 June 2016, 8 m3, SG + cobbles 31 9 0.76 14,546 ± 18 1.00 4,651 ± 10
22 June 2016, 10 m3, SG 31 17 1.11 18,078 ± 23 1.27 6,272 ± 28
23 June 2016, 10 m3, SG 31 17 1.11 18,445 ± 29 1.27 6,237 ± 44

Note. Hσ and Hτ denote the postwatering vertical burial depths of the normal‐stress sensor and shear‐stress sensor, respectively.
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τ
σ
¼ Hτ

Hσ
tanθ: (27)

By contrast, equations (1) and (3), which include a first‐order correction for the effect of small variations in
debris thicknesses on τ but not on σ, predict that

τ
σ
¼ Hτ

Hσ
tanθ−κ tan θ−βð Þ½ �: (28)

Finally, equations (9) and (10), which include corrections for the effects of arbitrary variations in debris
thicknesses on both τ and σ, predict that

τ
σ
¼ Hτ

Hσ

tanθ−κ tanθ− tanβð Þ
1þ κ tanθ tanθ− tanβð Þ
� 	

: (29)

We note that (29) reduces to (28) if σ is approximated by (1) and tanθ − tan β is approximated by tan(θ − β).
Furthermore, both (29) and (28) reduce to (27) if either κ = 0 or θ = β apply.

Comparisons of the values of τ/σ obtained from the data of Table 3 with values predicted by (27)–(29)
demonstrate that (29) with κ = 0.7 yields the best overall match to the data (Figure 6). Moreover, use of

Figure 5. Percent error of basal stress predictions obtained by using equations (9) and (10) with values of κ ranging from 0
to 1. (a) Predictions of basal normal stress. (b) Predictions of basal shear stress. Predictions are shown for each of six
experiments identified by date on the horizontal axes. However, for the experiment of 14 June 2016, prediction errors for τ
calculated using κ = 0 and κ = 0.1 are not shown because they are off scale. In this case the errors are 125% and 108%,
respectively.
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(29) with κ = 0.7 provides the most accurate prediction of τ/σ in each experiment with one minor exception
—the data point for 14 June 2016. In this case (28) with κ = 0.9 provides a slightly superior prediction
(Figure 6). (Use of diverse values of κ in (28) shows that κ = 0.9 yields that equation's best overall
predictions. The optimal value κ = 0.9 in (28) differs from the optimal value κ = 0.7 in (29) for several
reasons, but most notably because the orientation of the surfaces on which lateral pressures exert force
differs in the derivations of (28) and (29). For (28) these lateral surfaces are normal to the sloping bed,
and for (29) they are vertical.)

Another important result illustrated in Figure 6 is that the infinite‐slope approximation, equation (27), yields
predictions of τ/σ that err by an average of 125%. The predictions are universally too large because equa-
tion (1) consistently underestimates values of σ and equation (2) consistently overestimates values of τ for
cases in which a debris mass thickens in the downslope direction. In comparison, the prediction errors of
(29) with κ = 0.7 average 11.0% percent, and the prediction errors of (28) with κ = 0.9 average 14.5%.

5.3. Apparent Basal Coulomb Friction With DEM Topography

Full engagement of Coulomb friction at the base of sloping debris masses is described by |τ/σ| = tan ϕ if the
stress components τ and σ act directly on the sloping bed where friction acts. For this limiting equilibrium
state, accurate measurements or calculations of τ and σ suffice to determine the value of the effective basal
friction angle, ϕ, which implicitly accounts for any pore pressure effects. However, identification of a suita-
ble basal friction angle is less straightforward if a slope is represented by discretized staircase topography, as
it is in a DEM. In this case the applicable force balance describing a Coulomb limiting equilibrium state
involves the stress components τZX and σZZ acting on the staircase treads, and the ratio |τZX/σZZ| serves as
an appropriate measure of engaged basal friction. Employing (13) and (14) to evaluate this stress ratio yields

τZX=σZZj j ¼ κ tanβj j ¼ tanϕtread; (30)

where ϕtread is the apparent basal friction angle on the horizontal treads of the staircase, and the absolute
values of τZX/σZZ and tanβ indicate that ϕtread must be nonnegative, even if τZX and β are negative. There
is little reason to expect that ϕtread = ϕ would apply in (30) because the tread has an orientation and sur-
face area that differ from those of the sloping surface on which friction physically acts. Nevertheless, ϕtread
has clear importance because it is the apparent friction angle that is necessary to produce a balanced limit-
ing equilibrium state if friction is assumed to act on the horizontal treads of a staircase rather than on a
sloping bed.

Figure 6. Comparisons of measured values of the basal stress ratio τ/σ with alternative predictions of τ/σ obtained using
equations (27)–(29) and the values of geometric parameters listed in Table 3.
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Explicit relationships between ϕtread and ϕ can be obtained by exploiting
the fact that both (29) and (30) describe a state of limiting equilibrium if
τ/σ = tan ϕ and Hτ/Hσ = 1 apply. This condition allows (29) and (30) to
be treated as simultaneous equations. However, the resulting relationship
between ϕtread and ϕ varies somewhat depending on the sign and value of
β, because these properties determine the signs of the basal shear stresses τ
and τZX (Table 4). We focus first on the case illustrated in Figures 1 and 2,
in which β > 0, τ > 0, and τZX > 0 apply. For this case, (29) can be reduced
to the form

tanϕ ¼ 1−κð Þ tanθþ tanϕtread

1þ κ tan2θ− tanθ tanϕtread
: (31)

(This form is obtained from (29) by using (30) to replace κ tan β with
tanϕtread and using the Coulomb limit equilibrium equation to replace
τ/σ with tanϕ.) Some algebraic manipulation of (31) followed by use
of a well‐known trigonometric identity (e.g., Dwight, 1961, equation
405.02) then yields

tanϕtread ¼ κ tanθþ tan ϕ−θð Þ: (32)

For slopes inclined at nearly the angle of repose, such that ϕ ≈ θ
applies, (32) reduces to the approximation tanϕtread ≈ κ tan θ ≈ κ tan ϕ.
More generally, (32) indicates that applicable values of ϕtread can be
either larger or smaller than those of ϕ, depending on the values of θ and κ.

The significance of (32) for slope stability computations that use discre-
tized DEM topography can be illustrated by using the equation to graph
ϕtread/ϕ as a function of θ for values of κ ranging from 0.5 to 1 and values
of ϕ ranging from 20° to 50° (Figure 7). If κ = 0.5 applies, then values of
ϕtread/ϕ are generally smaller than 1 unless a very steep basal slope with
θ > 70∘ exists (Figure 7a). On the other hand, if κ = 1 applies, then values
of ϕtread/ϕ exceed 1 for all cases in which θ > ϕ applies, and in some cases
the value of ϕtread exceeds that of ϕ by a factor of 2 or more (Figure 7c).
Behavior that is intermediate between those with κ = 0.5 and κ = 1 is evi-
dent if κ = 0.7 applies (Figure 7b).

Equations that differ slightly from (32) apply for cases with adverse sur-
face slopes (i.e., slopes with β < 0). If β < 0 and tanβ > [1 − (1/κ)] tan θ
each apply, then basal shear stresses on a smoothly sloping bed and
staircase treads have opposite signs, such that τ > 0 and τXZ < 0 each
apply. In this case a derivation that parallels the derivation of (32) yields
the result tanϕtread = − [κ tan θ+ tan (ϕ − θ)]. This result and (32) can
be consolidated into a single equation expressed as

Table 4
Summary of Equations Relating ϕtread to ϕ, θ, κ and β as Well as the Applicable Horizontal, Limit‐Equilibrium Force Balance

Range of applicability Equation relating ϕtread to ϕ, θ and κ Equations governing horizontal, limit equilibrium force balance

β ≥ 0 tanϕtread = sgn (β)[κ tan θ+ tan (ϕ − θ)] tanϕtread = κ tan β
κ(tanβ − tan θ) = tan (ϕ − θ)

β < 0 and tanβ≥ 1− 1
κ

� �
tanθ tanϕtread = sgn (β)[κ tan θ+ tan (ϕ − θ)] tanϕtread = − κ tan β

κ(tanβ − tan θ) = tan (ϕ − θ)
β < 0 and tanβ≤ 1− 1

κ

� �
tanθ tanϕtread = − κ tan θ+ tan (ϕ+θ) tanϕtread = − κ tan β

κ(tanβ − tan θ) = − tan (ϕ+θ)

Note. All equations assume that θ ≥ 0 applies.

Figure 7. Graphs of solutions of equations (32) and (33), illustrating how
ϕtread/ϕ varies as a function of the mean basal slope angle θ depicted in
Figure 2. Graphs are shown for various plausible values of the basal friction
angle ϕ and lateral pressure coefficient κ. All graphs assume that θ ≥ 0
applies and that either β≥ 0 or tanβ> [1− (1/κ)] tan θ applies. (a) κ= 0.5, (b)
κ = 0.7, and (c) κ = 1.
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tanϕtread ¼ sgn βð Þ κ tanθþ tan ϕ−θð Þ½ �; (33)

where sgn(β) denotes the sign of β (Table 4). This equation implies that
tanϕtread ≥ 0 is always satisfied, because the sign of β is the same as that
of [κ tan θ+ tan (ϕ − θ)] for scenarios that satisfy a limiting equilibrium
force balance (Table 4). Equation (33) additionally implies that the family
of graphs portrayed in Figure 7 is also valid for cases with gentle adverse
surface slopes if tanβ > [1 − (1/κ)] tan θ applies.

If an adverse surface slope is steeper, such that tanβ < [1 − (1/κ)] tan θ
applies, then the basal shear stresses acting on a smoothly sloping bed
and staircase treads are each negative (i.e., they act in the negative x and
negative X directions of Figures 1 and 2). In this case a derivation that par-
allels the derivation of (32) yields

tanϕtread ¼ −κ tanθþ tan ϕþ θð Þ: (34)

Graphs of this equation are illustrated in Figure 8, and they differ from
those in Figure 7. One of the most important differences is that they indi-
cate that values of ϕtread universally exceed those of ϕ if θ > 0 applies.
Additionally, the graphs are truncated where ϕ+θ → 90∘ occurs, because
no limit equilibrium horizontal force balance is attainable if ϕ+θ ≥ 90∘

applies, regardless of the values of β or κ.

The limit equilibrium horizontal force balance equations that accom-
pany (33) and (34) differ from one another, as summarized in Table 4.
They show that if β = θ applies (which requires that β > 0 applies), then
a state of Coulomb limiting equilibrium requires that ϕ = θ is satisfied,
consistent with the behavior of an infinite slope. Another important spe-
cial case is that in which β = 0 and κ = 1 apply, as is true for a static
liquid. In this case the force balances show that a limiting equilibrium
state exists only if ϕ = 0 applies, regardless of the value of θ. The value
ϕ = 0 also applies to a limiting equilibrium force balance for the special
case in which an adverse slope satisfies tanβ = [1 − (1/κ)] tan θ, regard-
less of the value of κ. Physically, this special case corresponds to one with
zero basal shear stress on a smoothly sloping bed (τ = 0) but finite basal
shear stress on a staircase tread, and in this case the tread friction
satisfies tanϕtread = (1 − κ) tan θ = − κ tan β.

6. Discussion

Unlike formulas derived from infinite‐slope or shallow‐debris assump-
tions, our new basal stress formulas place few restrictions on the angles
that characterize the surface slope and basal slope of a debris mass. Our

derivations of all formulas assume that the basal slope angle θ is positive, but the formulas are equally valid
for cases with θ < 0. For such cases, the formulas involve mirror images of the angles θ and β illustrated in
Figures 1 and 2. Thus, a case with θ> 0 and β< 0 is exactly analogous to a case with θ< 0 and β> 0 because it
is a mirror image of that case.

The approach we use to obtain our new basal stress formulas has similarities to approaches employed in
some methods of slices or columns used in classical slope stability analyses (e.g., Bromhead, 1986).
However, to our knowledge our approach does not duplicate any of these approaches. It can nevertheless
be employed much as methods of slices are employed—by aligning adjacent slices or columns with various
bed slopes and surface slopes and then summing a series of local forces to obtain a global force balance for
the assemblage. In such an application, our formulas imply that lateral forces acting on the vertical faces of
adjacent columns balance one another, but one column nevertheless exerts additional force on an adjacent

Figure 8. Graphs of solutions of equation (34), illustrating how ϕtread/ϕ var-
ies as a function of the mean basal slope angle θ depicted in Figure 2. Graphs
are shown for various plausible values of the basal friction angle ϕ and
lateral pressure coefficient κ. All graphs assume that θ ≥ 0, β < 0, and
tanβ < [1 − (1/κ)] tan θ apply. (a) κ = 0.5, (b) κ = 0.7, and (c) κ = 1.
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column downslope if its basal friction is too small to support its calculated τ/σ value. In this case the com-
pressional action‐reaction force pair acting on the shared vertical faces of the adjacent columns must
increase, implying that the applicable local value of the lateral pressure coefficient κ must be larger than
an “at rest” value such as that calibrated in our experiments.

Our new basal stress formulas also can be applied in depth‐averaged dynamicmodels such as those of Savage
and Hutter (1989) and Iverson and George (2014). When employed in this way, the formulas can be used to
identify areas of local instability in static source areas. Onset of subtle motion at these locations may subse-
quently lead to more widespread motion through the process of momentum exchange—contingent on
whether material in adjacent computational cells has sufficient basal frictional resistance to counteract
themomentum influx (e.g., Iverson &George, 2016). Again, in such scenarios, with regions of both compres-
sional and extensional deformation, applicable values of κ may vary and differ from the value calibrated in
our experiments (cf. Hungr, 2008).

Our results concerning the apparent basal Coulomb friction that applies if topography is represented by a
staircase function have large implications for both slope stability analyses and depth‐averaged debris
dynamics analyses that employ unsmoothed discretized base topography as represented in DEMs. The requi-
site adjustment of basal friction might be viewed as an artifact associated with use of DEM staircase topogra-
phy, but it is nevertheless essential to ensure accurate force balances in such models. We are unaware of any
prior study that has identified this requirement.

Application of our staircase basal friction formulas in dynamic models involves some subtleties that are
beyond the scope of this paper, however. Whereas the direction of action of the frictional resisting force
for a static debris mass is relatively straightforward (because basal frictional resistance must oppose and bal-
ance the net static driving force), frictional resistance opposes motion—not net forcing—of a moving debris
mass irrespective of its geometry. Thus, the simple geometric criteria established in this paper for evaluating
the direction and magnitude of the apparent frictional force may need to be generalized for application in
dynamic models. Computations and experiments that involve rapid changes in the direction of motion dur-
ing multidimensional flow interactions with adverse slopes and topographic barriers provide good test cases
for such generalizations (e.g., Iverson et al., 2016).

7. Conclusions

The findings we report here support the following conclusions:

1. Newly derived algebraic formulas provide estimates of basal normal stress and shear stress that on aver-
age err by less than 3% and 13%, respectively, in predicting basal stresses measured in six large‐scale
experiments involving steeply sloping, wet debris masses with varying geometries and compositions.
For the conditions investigated in these experiments, much larger prediction errors result from use of
infinite‐slope or shallow‐debris approximations.

2. The derivations of the new basal stress formulas place few restrictions on the ranges of surface slope
angles or basal slope angles for which they apply.

3. The new basal stress formulas include a single tuning parameter, a lateral pressure coefficient κ, but a
fixed value κ= 0.7 yields good predictions for the full range of conditions investigated in our experiments.

4. Specialized versions of the basal stress formulas apply if smoothly sloping terrain is discretized and repre-
sented by a staircase function, as it is in DEMs.

5. If basal terrain is represented by a staircase function, then accurate evaluation of limiting equilibrium
conditions in which Coulomb friction is engaged on the horizontal surfaces (or treads) of the staircase
requires an adjustment of the apparent basal Coulomb friction angle. For most debris masses, including
all debris masses with nonnegative surface slopes (β ≥ 0), the adjustment can be expressed as
tanϕtread = sgn (β)[κ tan θ+ tan (ϕ − θ)], where θ is the local staircase slope angle, ϕtread is the apparent
Coulomb friction angle of debris contacting the treads of the staircase, and ϕ is the true basal friction
angle of the same debris in contact with a bed sloping smoothly at the angle θ. For debris masses with
adverse surface slopes that are steep enough to satisfy tanβ < [1 − (1/κ)] tan θ, the adjustment is
expressed as tanϕtread = − κ tan θ+ tan (ϕ+θ).

6. Slope‐dependent differences between the values of ϕtread and ϕmay demandmodifications or corrections
of numerical simulations that employ staircase basal topography as represented in DEMs.
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Appendix A: Derivation of Equation (3)
A brief derivation of equation (3) is provided here to clarify the equation's origin and physical basis. The
derivation begins by employing the Cauchy momentum‐conservation equation, which expresses Newton's
second law of motion as it applies to continuum mechanics (e.g., Malvern, 1969). For a continuous body
of debris in contact with a bed sloping at an angle θ on Earth's surface, the x (downslope) component of
the Cauchy equation may be expressed as

ρ
du
dt

¼ ρg sinθ−
∂σxx
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

: (A1)

Here u is the downslope component of velocity and d/dt is a material total time derivative defined as d/
dt = ∂/∂t+u(∂/∂x)+v(∂/∂y)+w(∂/∂z), where v and w are the cross‐slope (y) and slope‐normal (z) components
of velocity, respectively. Terms on the right‐hand side of (A1) express the effects of a driving force due to the
downslope component of Earth's gravitational acceleration, g sin θ, and of resisting forces due to spatial gra-
dients in the stress components σxx, τyx, and τzz. The sign of the slope‐parallel normal stress σxx differs from
the signs of the slope‐parallel shear stresses τyx and τzx because we define σxx using a geomechanics sign con-
vention in which compression is positive but define τyx and τzx using a standard continuum mechanics
sign convention.

The first step in our reduction of (A1) involves depth integration of the equation from the base of the debris
mass at z= zbed to its stress‐free upper surface at z= h. Mathematical details of the integration are somewhat
cumbersome but are presented in detail by Iverson and Ouyang (2015). The result of the integration can be
expressed as

ρh
du

dt
¼ ρgh sinθ−

∂ σxxhð Þ
∂x

−τxx bed
∂zbed
∂x

þ ∂ τyxh
� �
∂y

þ τyx bed
∂zbed
∂y

−τzx bed; (A2)

where overbars denote depth‐averaged quantities, and the depth‐averaged material time derivative is

defined as d=dt ¼ ∂=∂t þ v ∂=∂yð Þ þ w ∂=∂zð Þ . The left‐hand side of (A2) is an approximation insofar as it
neglects the effects of differential advection of momentum due to variations of velocity or bulk density with
depth. By contrast, the right‐hand side of (A2) is exact. It involves no assumptions about rheology that might
influence the various stress components, including the basal shear stress τzx bed.

The next steps in our derivation assume that steady state mechanical equilibrium exists (i.e., du=dt ¼ 0), that

effects of stress variations in the cross‐slope direction can be neglected (i.e., ∂ τyxh
� �

=∂y ¼ 0), and that the

origin of the z coordinate lies on the plane of the bed (i.e., zbed = 0). In this case (A2) reduces to a simple
expression for the basal shear stress,

τzx bed ¼ ρgh sinθ−
∂ σxxhð Þ

∂x
: (A3)

Use of (A3) to obtain equation (3) of themain text involves two key physical assumptions. The first is that the
normal stress acting on planes parallel to the bed, σzz, is the geostatic normal stress given by

σzz ¼ ρg cosθ h−zð Þ: (A4)

This assumption is widely applied in analyses of geophysical problems, but it is strictly valid only if ∂h/∂x= 0
applies. In other words, it is valid only for one‐dimensional stress states like those assumed in the derivations
of equations (1) and (2) in the main text. Equation (A4) also assumes that no acceleration occurs normal to
the bed, but this assumption can be relaxed by modifying the effective value of g.

The second key assumption is that the slope‐parallel normal stress, σxx, is proportional to σzz, such that

σxx ¼ κσzz ¼ κρg cosθ h−zð Þ (A5)

applies, where κ is a proportionality coefficient. This assumption is also widely applied in geophysical ana-
lyses, and in various contexts κ can be interpreted as an elastic constant, a fluid constant (typically κ=1), or a
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Rankine or Coulomb earth‐pressure coefficient (which has different values for compressional or extensional
plastic equilibrium states). Here we treat κ simply as a tuning parameter. Consequently, the use of κ in (A5)
entails an assumption that is less fundamental than the use of (A4) to obtain (A5).

The final step in deriving equation (3) of the main text begins with depth integration of (A5), which yields an
expression for the depth‐averaged longitudinal normal stress

σxx ¼ 1
h
∫
h

0κρg cosθ h−zð Þdz ¼ 1
2
κρgh cosθ: (A6)

Substitution of (A6) into (A3) then yields

τzx bed ¼ ρgh sinθ−κρgh cosθ
∂h
∂x

; (A7)

which matches equation (3) of the main text, albeit with minor differences in notation.

Appendix B: Moment Limit Equilibrium
Our analysis of moment limiting equilibrium considers a quadrilateral body with a geometry similar to that
of the shaded body illustrated in Figure 1 but with a different origin of coordinates. The analysis identifies
states in which the body is poised to undergo rigid‐body rotation that causes it to topple in the downslope
direction. It applies for all values of β and θ, but it emphasizes cases in which β > 0 and θ > 0 apply. If
β > θ also applies, then the upper surface of the body slopes more steeply than its basal surface, enhancing
the potential for the body to topple.

We evaluate moment equilibrium by analyzing torques that act through a pivot point located at the lowest
corner of the body, where we define an origin of rectangular Cartesian coordinates as (X,Z) = (0,0). We use
H1 to denote the height of the downslope lateral boundary of the body, which rises vertically from the origin,
and we use H2 to denote the height of the upslope lateral boundary of the body. The elevation of the basal
boundary of the body is described by b(X) = X tan θ, and the elevation of the upper surface of the body is
described by η(X) = H1+X tan β. The body extends horizontally from X = 0 to X = L, and the cross‐slope
breadth of the body is B. Therefore, the mass M and weight W of the body are described by

M ¼ ρLB
H1 þH2

2
; W ¼ Mg: (B1;B2)

The weightW acts vertically, and it is one of three forces that influence moment equilibrium. The other two
forces are the horizontally acting lateral pressure forces described by

F1 ¼ 1
2
κρgBH1

2; F2 ¼ −
1
2
κρgBH2

2: (B3;B4)

The crux of the moment analysis involves finding the moment arms through which the forces F1, F2, andW
exert torques that act to rotate the body about the pivot point (X,Z) = (0,0).

Finding the moment arm for F1 is simple because this force acts at the centroid of a lateral pressure distribu-
tion in which the pressure is assumed to increase linearly with depth. Elementary analytical geometry shows
that the centroid of this pressure distribution is located at the elevation Z = (1/3)H1. Thus, the moment arm
is H1/3, implying that the moment due to F1 is given by

m1 ¼ 1
3
H1F1 ¼ 1

6
κρgBH1

3: (B5)

Finding the moment due to F2 is no different in principle from finding m1, but it is a more complicated
procedure because the centroid of the linear lateral pressure distribution that produces F2 is located at an
elevation Z = L tan θ+(1/3)H2. Furthermore, because we aim to eliminate H2 from our results, we express
H2 as H2 = H1+L(tanβ − tan θ), so that the moment arm for F2 becomes L tan θ+(1/3)
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[H1+L(tanβ − tan θ)]. Multiplying this moment arm with (B4) and algebraically manipulating the resulting
expression yields the moment due to F2:

m2 ¼ −
1
6
κ ρgB H1

3 þ 3H1
2L tanβþ 3H1L

2 tan2β− tan2θ
� �þ L3 tan3βþ 2 tan3θ−3 tan2θ tanβ

� �
 �
(B6)

The moment arm for the weight forceW is given by the X coordinate of the center of mass of the body, XCM.
This coordinate is found by integrating the product of X and the mass distribution of the body throughout its
extent in the X‐Z plane:

XCM ¼ ρB
M

∫
L

0
X ∫

H1þX tanβ

X tanθ
dZdX : (B7)

Evaluating the integrals in (B7) and combining the result with (B1) enables elimination of ρB/M and yields

XCM ¼ H1Lþ 2
3L

2 tanβ− tanθð Þ
H1 þ H2

: (B8)

This equation simplifies further because the geometry of the body indicates that the relationship
tanβ− tan θ= (H2−H1)/L applies. Substituting this relationship in (B8) and manipulating the algebra then
reduces (B8) to

XCM ¼ L
H1 þ 2H2

3 H1 þH2ð Þ : (B9)

Finally, the moment m3 = WXCM due to the weight force W is found by using (B1) and (B2) in conjunction
with (B9) and the substitution H2 = H1+L(tanβ − tan θ) to obtain

m3 ¼ 1
2
ρgBL2 H1 þ 2

3
L tanβ− tanθð Þ

� 	
: (B10)

The last step in calculating the moment equilibrium of the body entails adding (B5), (B6), and (B10) to find
the total moment m = m1+m2+m3, setting m = 0, and manipulating the equation m = 0 algebraically to
obtain a dimensionless quadratic equation:

κ
1
3
tan3βþ 2

3
tan3θ− tan2θ tanβ

� �
−
2
3

tanβ− tanθð Þ
� 	

L
H1

� �2

þ κ tan2β− tan2θð Þ−1½ � L
H1

� �
þ κ tanβ ¼ 0:

(B11)

For the special case of an infinite slope, in which β = θ applies, the dimensionless moment balance (B11)
reduces to

L=H1 ¼ κ tanβ: (B12)

Thus, for increasingly steep surface slopes and lateral pressures, which are indicated by larger values of
κ tan β, an increasingly large length‐to‐thickness ratio of the body, L/H1, is necessary in order to maintain
moment equilibrium. On the other hand, if β = 0 applies, then moment equilibrium can be satisfied only
in the limit of a vanishingly slender body, with L/H1 → 0.

Similar principles apply to the moment limit equilibrium of quadrilateral bodies of nonuniform thickness,
but solutions of (B11) indicate that the geometric influence of the body shape in these cases can be quite
complex. Graphs of such solutions for cases with κ = 1 are illustrated in Figure B1, in which increasing
values of L/H1 imply an increasing propensity for toppling (i.e., they imply that relatively short, squat body
geometries are necessary to prevent failure by toppling). The curves in Figure B1 show that the moment
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equilibrium is sensitive to the surface slope angle, particularly for β > 40∘. Indeed, for very steep surface
slopes, with β > 60∘, moment equilibrium is nearly impossible to attain because it additionally requires a
very steep basal slope, with θ > 50∘. (The fact that moment equilibrium can be enhanced by increasing
the angle of the basal slope may seem counterintuitive, but it is a consequence of the reduction of the
downslope lateral force that occurs in conjunction with raising the bed elevation beneath the upslope
boundary of the quadrilateral.) On the other hand, Figure B1 also shows that the moment limit
equilibrium of quadrilaterals with basal slope angles that satisfy θ ≤ 30∘ differs little from that of
quadrilaterals resting on flat basal surfaces (θ = 0).
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