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Modelling landslide liquefaction, mobility bifurcation and
the dynamics of the 2014 Oso disaster

R. M. IVERSON* and D. L. GEORGE*

Some landslides move slowly or intermittently downslope, but others liquefy during the early stages of
motion, leading to runaway acceleration and high-speed runout across low-relief terrain. Mechanisms
responsible for this disparate behaviour are represented in a two-phase, depth-integrated, landslide
dynamics model that melds principles from soil mechanics, granular mechanics and fluid mechanics.
The model assumes that gradually increasing pore-water pressure causes slope failure to nucleate at the
weakest point on a basal slip surface in a statically balanced mass. Failure then spreads to adjacent
regions as a result of momentum exchange. Liquefaction is contingent on pore-pressure feedback that
depends on the initial soil state. The importance of this feedback is illustrated by using the model to
study the dynamics of a disastrous landslide that occurred near Oso, Washington, USA, on 22 March
2014. Alternative simulations of the event reveal the pronounced effects of a landslide mobility
bifurcation that occurs if the initial void ratio of water-saturated soil equals the lithostatic, critical-state
void ratio. They also show that the tendency for bifurcation increases as the soil permeability decreases.
The bifurcation implies that it can be difficult to discriminate conditions that favour slow landsliding
from those that favour liquefaction and long runout.
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INTRODUCTION

Many landslides never attain speeds as large as 0-1 m/s, but
others transform into highly mobile flows that reach speeds
greater than 10 m/s and travel long distances across flat or
gently sloping terrain. Field evidence and laboratory experi-
ments indicate that this high mobility commonly results from
partial or complete liquefaction of water-laden landslide
material or overridden bed material, and that liquefaction is
caused by some combination of undrained compression and
contractive shearing of one or both of these materials (e.g.
Hutchinson & Bhandari, 1971; Bishop, 1973; Eckersley,
1990; Iverson et al., 1997, 2000, 2011; Spence & Guymer,
1997; Wang & Sassa, 2001, 2003; Hungr & Evans, 2004;
Ochiali et al., 2007). Diverse terms such as ‘flowslide’, ‘debris
flow’, ‘mudflow’, ‘mudslide’, or ‘debris avalanche’ have been
used to describe landslides that liquefy wholly or partially.
Irrespective of differences in terminology, all liquefying land-
slides exhibit a pronounced reduction of frictional strength
following the onset of landslide motion, a persistence of low
friction during at least part of the landslide runout process
and a recovery of frictional strength during post-depositional
consolidation of landslide debris.

The evolution of material strength in a landslide that
liquefies is contingent on the evolving dynamics of the land-
slide as a whole. Therefore, realistic models of liquefying
landslides cannot be founded on traditional rheological
formulas, which specify that local resistance to motion is a
function of only local stress states and displacements or
displacement rates (Iverson, 2003). Instead, realistic models
must allow the apparent rheology to evolve in response to
feedbacks that develop as the distributions of landslide mass,
momentum and pore pressure evolve. These large-scale feed-
backs can cause time- and space-dependent changes in the
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local material state, similar to changes that play a central role
in quasi-static, critical-state soil mechanics (e.g. Schofield &
Wroth, 1968; Wood, 1990). In contrast to evolving material
states in quasi-static soils, however, evolving material states in
liquefying landslides may be influenced by arbitrarily large,
rapid displacements and momentum transfer.

Models that aim to explain the behaviour of landslides that
liquefy must also be able to explain landslide behaviour in
which liquefaction does not occur — without invoking differ-
ences in intrinsic granular friction. Models that lack this
discriminatory power can shed no light on factors favouring
or limiting the potential for liquefaction and attendant high
mobility. Indeed, the difference between relatively slow, stable
landslide motion and unstable, liquefying landslide motion
may represent a sharp behavioural bifurcation (Iverson ez al.,
2000; Iverson, 2005). Important questions about such a bifur-
cation concern its sensitivity to initial conditions and
material properties.

This paper summarises the conceptual and mathematical
framework, as well as practical application, of a recently
developed computational model that simulates bifurcating
landslide dynamics without invoking any changes in intrinsic
friction. Instead, changes in effective friction arise from feed-
backs that depend mostly on the initial void ratio of water-
saturated soil and on the relative timescales for gravity-driven
landslide motion and relaxation of excess pore-water pressure
that is generated by that motion. These feedbacks determine
the propensity for liquefaction and high mobility. The model
is used to study the dynamics of a disastrous, highly mobile
landslide that occurred on 22 March 2014 near the commu-
nity of Oso in Washington State, USA (Fig. 1).

MODEL FRAMEWORK
Conceptual background

The proposed model, called D-Claw, considers the gravity-
driven motion of fluid-filled granular mixtures that can
undergo dilation and contraction during both quasi-static
and inertial deformation. The model employs depth-
integrated continuum mechanical equations that blend
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Fig. 1. West-looking oblique aerial photograph of the 22 March 2014
Oso landslide source area and deposit as they appeared on 7 May
2014. See Iverson et al. (2015) for further details. Photograph
courtesy of Vaughn Collins, Northwest Hydraulic Consultants

concepts from critical-state soil mechanics, fluid mechanics
and granular mechanics. Iverson & George (2014) provide a
comprehensive derivation of the model equations, and
George & Iverson (2014) describe the numerical method of
solving the equations, as well as tests of model predictions
against data from large-scale experiments. Here the model’s
key attributes are summarised.

The mathematical structure and numerical solution tech-
nique used by D-Claw permit seamless simulation of land-
slide motion from initiation to deposition. For statically
balanced initial states, the D-Claw equations take a familiar
form, because they reduce to force-balance equations similar
to those used in three-dimensional (3D) limit-equilibrium
slope-stability analyses that employ methods of columns.
Modelled landslide motion is triggered by specifying a
gradual growth of basal pore-water pressure. Use of statically
balanced initial states distinguishes D-Claw from landslide
dynamics models that use dam-break initial conditions and
thereby impose a finite initial force imbalance (e.g. Hungr,
1995).

Depth integration embeds the effects of evolving surface
and basal boundary conditions into the governing conserva-
tion equations used in D-Claw. Depth integration also
reduces the degrees of freedom in the conservation equations,
thereby facilitating efficient computation of solutions. This
reduction requires approximation of the vertical or bed-
normal momentum equation by a static force balance — an
approximation that is justified by scaling if a landslide’s
length and width greatly exceeds its thickness (Savage &
Hutter, 1989). Such scaling is not applicable in all landslides,
but the depth-integrated form of D-Claw nevertheless pro-
vides a useful compromise between generality and practi-
cality. Moreover, solutions of the depth-integrated equations
yield predictions that can be rigorously tested, because they
produce output with a resolution similar to that of data ob-
tained in large-scale landslide dynamics experiments (George
& Iverson, 2014).

D-Claw employs a dilatancy angle, w, to help link
continuum-scale dynamics to grain-scale behaviour. The
model does not specify values of y, but instead calculates
them by using the difference between the ambient solid
volume fraction m and an equilibrium solid volume fraction
Mmeq that varies in response to changes in the local stress state
and shear rate. (Note that values of m are related to those of
the porosity n and void ratio e by m=1—n=1/(1 +¢).) Thus,
the D-Claw dilatancy definition

tan y = m — Mg (1)

accounts for the fact that values of both m and mq evolve.
However, the equilibrium value m.q responds instan-
taneously to changes in the local material state, while the
ambient value m relaxes gradually toward meq with a
timescale that is determined by coupled evolution equations
(Iverson & George, 2014).

Values of miq in D-Claw are constrained by the results of
annular shear cell experiments with concentrated mixtures of
grains and liquids (Boyer et al., 2011). These experiments
allowed unrestricted coevolution of m and the shear rate y
under drained, stress-controlled conditions, which ultimately
led to steady equilibrium states described by

Merit
1+VN

Here myi; is the value of meq that applies if y = 0 and the
stress state is lithostatic, and N is the dimensionless ratio of
viscous shear stresses and grain-contact normal stresses,
which is zero in static states and finite if y # 0. In D-Claw, N
serves as a scalar measure of the local material state, and it is
defined mathematically as

Megq (N) = (2)
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where u is the pore-fluid viscosity, o, is the ambient mean
effective normal stress, p; is the mass density of solid grains
and ¢ is a characteristic grain diameter. The quantity p?o°
in the denominator of equation (3) gauges the inertial con-
tribution to grain-contact stresses (cf. Bagnold, 1954), and it
serves to keep N finite in fully liquefied states with ¢.=0.
However, o, > p,j>0> applies in most instances owing to the
relaxation of m toward m.q and the accompanying relaxation
of excess pore-fluid pressure. As a result, equation (3) is
typically approximated well by the form N = uy/o. utilised
by Boyer et al. (2011), and the practical full-scale range of
Nis 0<N<1 (Iverson & George, 2014).

Evolution of m influences the evolution of several other
key quantities in D-Claw. For example, the mixture bulk
density, p, is defined by

p = pgn+p(1 —m) (4)

where m evolves but both pg and the fluid mass density
pr are treated as constants. In turn, the evolution of p
influences the mixture’s linear momentum, defined as
pv=pgnvs+ pd1 —m)vg, where s is the solid-phase velocity,
v is the fluid-phase velocity and v is the velocity of the
mixture. This momentum definition implies that the mixture
velocity is defined by

p = PSS + pr(1 —m)wy
)

Another velocity linked to evolution of m is the apparent
velocity (i.e. volume flux per unit area) of the fluid phase
relative to the solid phase, ¢, defined as

g = (L—=m)(r =) (6)

(5)
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Although ¢ does not appear explicitly in the D-Claw equa-
tions, it plays an important role in calculating solid—fluid
drag. D-Claw evaluates this drag by employing Darcy’s law

qg=——>=Vp. (7)
u

which applies in a frame of reference that translates with the
solid velocity, v, (Bear, 1972). In equation (7) p. is the excess
pore-fluid pressure (i.e. the deviation from hydrostatic
pressure), and k(m) =k, exp[(my— m)/0-04] is an empirically
constrained intrinsic hydraulic permeability that increases as
m decreases (Iverson & George, 2014). The initial value of k
is ko, which applies in an initial statlc state with m=my.

The parameter k, has SI units of m?, and is related to the
hydraulic conductivity K by k (2 ,u)/(ptg) where K has SI
units of m/s. Values ky<10~"m? are apphcable for static
earth materials composed mostly of grains that are gravel-
sized or smaller (Freeze & Cherry, 1979), but values of & for
rapidly deforming granular materials could be a few orders of
magnitude larger.

Taken toigether equation (4) through equation (7) with
k<10*m” imply that v~ is generally a good approxi-
mation for most landslides, and D-Claw exploits this fact to
use v as a surrogate for v. As shown by Iverson & George
(2014), the approximation v~ v, is mathematically rigorous
if [|q||/|lvs|l <1 is satisfied or if the landslide material is
quasi-static and ||¢|| < 0-1 m/s is satisfied (where |||| denotes
the Euclidean norm of a vector). The approximation v~z v
allows D-Claw to account for the chief effects of solid—fluid
interactions while computing a single velocity field, thereby
conferring desirable mathematical properties (George &
Iverson, 2014).

A final constitutive parameter linked to the evolving value
of m in D-Claw is the bulk volumetric compressibility of
the solid—fluid mixture, a. To evaluate this compressibility,
D-Claw uses the empiricism

a

¢ m(oe + 00) ®)
where a is a proportionality coefficient and oy is a reference
normal stress that establishes the maximum compressibility,
almoy, which applies if o, =0. On the basis of fits to experi-
mental data for liquefied and partially liquefied sediment—
water mixtures, suitable values of a and o, are generally
a~0-03 and gy~ 1 kPa (Iverson & George, 2014).

Governing equations

D-Claw utilises depth-integrated Cartesian components of
v, which are u, vand w in the x, y and z directions, respectively
(Fig. 2). Depending on the problem of interest, z may be
oriented vertically or inclined so that it is normal to a basal
surface, but in all cases x and y are normal to z (cf. George &
Iverson, 2014). Depth integration extends from a fixed basal
surface at z=>5b(x, y) to the evolving landslide upper surface
at z=n(x, y, t), such that the landslide thickness is given by
h(x, y, t)=n—b. D-Claw computes the velocity components
u(x, y, t) and v(x, y, t) explicitly, but it treats w(x, y, f) as an
implicit variable that is related to u(x, y, ), v(x, y, t) and h(x,
¥, t) through kinematic boundary conditions. These con-
ditions stipulate that no mass passes through the upper
or basal surfaces of the landslide (Iverson & George, 2014).
More general kinematic boundary conditions and associated
jump conditions apply if entrainment or deposition of
material occurs at these surfaces (Iverson & Ouyang, 2015).

In addition to u(x, y, t), v(x, y, t) and h(x, y, t), D-Claw
computes m(x, y, t) and the basal pore-fluid pressure,
po(x, 3, t). The mass-, momentum- and pore-pressure

Fig. 2. Schematic illustration of the coordinate system and
depth-averaged dependent variables u(x, y, 1), v(x, y, 1), h(x, y, 1),
m(x, y, t) and py(x, y, t) used in D-Claw calculations of the behaviour
of the 2014 Oso landslide

conservation equations governing coupled evolution of
these variables may be written as (Iverson & George, 2014;
George & Iverson, 2014)
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in which g,, g, and g. are components of the gravitational
acceleration vector, and

h (Om om om

is the depth-integrated granular dilation rate. Like the
dependent variables in equations (9) through (13), D is a
function of x, y and ¢. It appears in the source terms of
equations (9) through (13), and it compensates for the
absence of derivatives of p in the equations. D-Claw isolates
the influence of D because of the important effect of the

n

EJ(V vs)dz =

b



178 IVERSON AND GEORGE

dilation rate in regulating landslide motion influenced by
pore-pressure feedback.

Another key feature of equations (9) through (13) is that /2 is
defined such that ph(x, y, t) is the landslide mass per unit basal
area AxAy (Iverson & George, 2014). As a consequence,
z=n=b+h denotes the height of a virtual free surface that
may not precisely match the height of either the granular solid
surface or pore-fluid surface (Fig. 3). This definition of % is
necessary in order to ensure mass conservation, because pore
fluid moves with respect to adjacent solid grains in response or
dilation or contraction, such that V-vy=—V-q is satisfied.
During this process the fluid level falls or rises relative to the
level of grains at the landslide surface.

Iverson & George (2014) also show that the definition of
the virtual free surface lends additional meaning to the
depth-integrated dilation rate D, because the z component of
q at z=n=>b+h locally satisfies —¢.|,_,= D as fluid passes
through the virtual free surface. Iverson & George (2014)
relate ¢:|,_, and D to k/u by employing Darcy’s law, equation
(7), and by deducing that the evolving bed-normal pore-
pressure profiles p(z, ¢) can be approximated by a series of
steady-state profiles that are constrained by mass conserva-
tion, by boundary conditions and by scaling considerations
which imply that |0°p/92*| > |9°p/0x?|, |0°p/0)?| (Fig. 4).
The resulting equation

where pg.h — py, is the basal effective normal stress, and ¢+ w
is the total basal friction angle, which accounts for the
contributions of a fixed, constant-volume friction angle, ¢,
and for those of the evolving dilatancy angle, w. The factors
ul(u® +v?)"* and v/(u* +v*)""? are included in equations (16)
and (17) to ensure that positive Coulomb tractions resist posi-
tive velocities. In the viscous (i.e. final) terms of equations
(16) and (17), 2u/h and 2v/h provide depth-integrated esti-
mates of the x and y components of the shear rate, y. In
general, these viscous terms are much smaller than the
Coulomb friction terms, except in atypical circumstances in
which the basal effective normal stress nearly vanishes (i.e.
pg-h—pr~0).

The other stress-related quantity in equations (11) and (12)
is the lateral normal stress coefficient, x. Building on
the work of Savage & Hutter (1989), many depth-integrated
landslide-dynamics models have used expressions for x that
are derived from variants of Rankine earth-pressure theory.
This approach requires specification of additional parameter
values, however (e.g. Iverson & Denlinger, 2001; McDougall
& Hungr, 2004). D-Claw includes the option of using this
approach, but to obtain the model results reported here, the
simple idealisation x=1 suggested by findings of Gray et al.
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explicitly linking evolution of D to evolution of # and py,. It &
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Fig. 4. Graph illustrating a sequence of instantaneous, steady-state
(16) pore-pressure profiles that satisfy 6%p/6z> = constant and the boundary
conditions, (0p/dz)|.=,=0 and p|._, ,= 0 as the normalised basal
. v pore pressure ppl(pg.h) evolves. As ppl(pg.h)—0, pore pressures
7oy = [pg:h — po] tan(¢ + y) (2 + 2)1 2 +2u(1 —m) h become negative at heights b < z < b+ h, implying the existence of a
u v tension-saturated state. For further details see Iverson & George
(17)  (2014)
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Fig. 3. Schematic illustration of the change in the position of the virtual free surface at z=#=~5b+h in response to dilation or contraction of a
mixture with pyJp;=2-7. Dashed lines indicate 2D boundaries of isometric 3D unit cells used to calculate the solid volume fraction, m. For
illustrative purposes, solid grains are assumed to be identical spheres with diameter J, and sphere centre spacings are chosen as either /36 or /2.
Spheres do not contact one another in either the dilated or contracted state illustrated here. A flux of pore fluid (¢) through the virtual free surface
accompanies changes in m caused by dilation or contraction. The idealised geometries used in this illustration exaggerate changes in m, ¢ and &
relative to changes that would occur in landslide materials containing grains with diverse shapes and sizes
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(1999, 2003) is employed. Use of this idealisation helps focus
the simulations on the phenomena of principle interest:
pore-pressure feedback and the causes and effects of land-
slide liquefaction.

Interpretation of the pore-pressure evolution equation (13)

Among the D-Claw equations, equation (13) has the
most unconventional form, and it merits some explanation
because it plays a pivotal role in the model. As detailed by
Iverson & George (2014), the equation is derived by assum-
ing that V-v; and V - ¢ are not functions of z (consistent with
the assumption that m and D are not functions of z), thereby
linking the evolving basal pore pressure p, to the pore-
pressure distributions in overlying material (Fig. 4). The first
term in equation (13) accounts for the temporal evolution of
Do, and the next two terms account for advective transport of
Pp by the velocity components « and v. The final two terms on
the left-hand side of equation (13) account for changes in py,
that result from evolution of / and m. (As shown by Iverson
& George (2014), these terms can be recast by including total
time derivatives of /1 and p in the equation.) The first term on
the right-hand side of equation (13) accounts for relaxation
of p, toward the hydrostatic equilibrium pressure peg.h.
The reciprocal of the coefficient 3k/ouh? in this term can
be interpreted as a pore-pressure relaxation timescale, and
contained within this timescale is the parameter group k/ou,
which can be interpreted as a pore-pressure diffusivity or
consolidation coefficient. The final term in equation (13)
accounts for the role of shear-driven contraction or dilation
in causing growth or decline of pore pressure.

Iverson & George (2014) show that a lowest-order,
steady-state approximation of equation (13) reduces the
equation to a simple balance involving only the pore-pressure
production and relaxation terms on the right-hand side. This
balance can be expressed as

h
po = prgh = =52 (1 ) P any (18)

If a constant value w <0 applies, then the steady
state defined by equation (18) indicates that pore-space con-
traction produces pore-fluid pressures that are larger than
hydrostatic. Fast shearing, represented by large values of
(u®+v?)"2, enhances this production, whereas high perme-
ability, represented by large values of k, reduces it. By con-
trast, if a constant value w > 0 applies, then shear-induced
dilation of pore space reduces the pore-fluid pressure to
values less than hydrostatic. This simple steady-state view of
pore-pressure responses aids interpretation of the compu-
tational results — although the dynamics represented in
equations (9) through (13) are intrinsically time-dependent
and are influenced by evolving y values.

Mathematical properties and numerical implementation

An important mathematical attribute of the governing
equations (9) through (13) is that they form a fully hyperbolic
system with desirable stability properties (George & Iverson,
2014). The equations’ hyperbolicity is due, in part, to the fact
that they model only a single velocity field, rather than
separate velocity fields for the solid and fluid phases. Many
two-phase depth-averaged models are known to lose hyper-
bolicity when solid and fluid velocity fields diverge past
some threshold (e.g. Pitman & Le, 2005). This behaviour can
render the governing equations unstable, and the loss of
hyperbolicity must be prevented numerically, commonly
through techniques that limit the differences between solid
and fluid velocity fields.

The numerical schemes implemented in D-Claw employ
shock-capturing finite-volume methods based on wave-
propagation algorithms, which utilise solutions to Riemann
problems at grid cell interfaces for numerical updates
(LeVeque, 2002). This highly developed family of numerical
schemes is implemented in the open-source software package
Clawpack (Clawpack, 2015). A specialised version of
Clawpack, called GeoClaw, is designed to address phenom-
ena common to shallow flow problems. D-Claw is an exten-
sion of GeoClaw developed specifically for solving the
equations utilised here (George & Iverson, 2014).

A significant and well-known challenge in using wave-
propagation methods to simulate shallow flows across topo-
graphy involves preservation of balanced steady states (e.g.
Bale et al., 2002). In landslide dynamics calculations, such
steady states play a crucial role, because virtually all land-
slides begin from statically balanced initial states and also con-
clude in statically balanced states (George & Iverson, 2014).
In D-Claw the preservation of steady states is accomplished
with an adaptation of well-balanced methods developed
previously for shallow-water flow problems (Bale et al., 2002;
George, 2008). With this approach, the frictional resistance
terms that balance gravitational driving forces in steady states
are incorporated directly in a specially designed Riemann
solver (George, 2008; George & Iverson, 2014). This
methodology also ensures that landslide dynamics involving
small deviations from a balanced steady state are computed
without introducing spurious numerical instabilities.

Another major computational challenge stems from the
need for high spatial resolution of solutions in regions where
values of variables change abruptly, as at the propagating
fronts of landslides. On the other hand, high resolution can
greatly increase computation time if it is maintained every-
where in the solution domain. To attain high resolution as
well as high computational efficiency, D-Claw uses adaptive
mesh refinement (AMR) tailored to shallow flow problems
with variable topography (LeVeque et al., 2011). George &
Iverson (2014) summarise the present implementation of
AMR and provide references to more detailed literature on
the topic. As a result of D-Claw’s use of AMR, none of the
alternative simulations of the Oso landslide required more
than 40 min of CPU time on an ordinary desktop computer
with a 2:67 GHz processor. At the same time, they took full
advantage of the 0-91 m horizontal resolution of lidar-
derived digital elevation models of the topography of the site.

MODELLING THE DYNAMICS OF THE
OSO LANDSLIDE

D-Claw is used to study the dynamics of a large, high-
mobility landslide that occurred following a long period of
unusually wet weather near Oso, Washington, USA, on
22 March 2014 (Fig. 1). The landslide (officially named the
SR 530 landslide by Washington State) caused 43 fatalities,
ranking it second only to a 1985 event in Mameyes, Puerto
Rico, as the worst landslide disaster in US history (cf. Jibson,
1992). Results of a multidisciplinary investigation of the
landslide’s behaviour are presented elsewhere (Iverson et al.,
2015). Here the focus is placed on insights that can be gained
from using D-Claw to model the dynamics of the landslide as
well as a spectrum of alternative behaviours computed for
landslides with the same initial geometry and basal friction
angle, but with modified values of the initial solid volume
fraction mg and permeability k.

Constraints from observations
Constraints on the character of the Oso landslide are
provided by pre-event (2013) and post-event (2014) lidar
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topography, geological mapping, precipitation records,
eyewitness observations, broadband seismic recordings
and post-event field investigations (Iverson et al., 2015).
The landslide originated on a 180-m high riverside bluff that
was inclined <20° on average and composed of horizontally
bedded proglacial and glacial sediments, ranging from a
glaciolacustrine silt-and-clay unit at the base of the slope to a
glaciofluvial sand-rich unit at the top (Dragovich et al.,
2003). A mantle of colluvium deposited during previous
episodes of landsliding at the site covered these sediments on
much of the lower part of the slope and also covered a small
part of the adjacent river floodplain. Investigations of the
detailed stratigraphy and geotechnical properties of the 2014
landslide source materials are underway but have not been
completed. Therefore, the present modelling assumes homo-
geneous landslide source material with properties typical of
poorly sorted sandy sediment.

The post-event topography and boundaries of the primary
depositional units of the 2014 landslide are illustrated in Fig. 5.
The uppermost part of the landslide mass remained stranded in
the source area as a relatively coherent slump block. Downslope
of this block, most of the landslide deposit consisted of
hummocky, disaggregated debris-avalanche material > 5m
thick. Scattered amid the hummocks were pools of sediment
that remained partially liquefied for weeks following the event.
The distal margin of the deposit consisted of fully liquefied,
wood-freighted debris-flow material, which in most places
formed a veneer <0-3m thick overlying debris-avalanche
material. On the basis of these variegated deposits, Iverson
et al. (2015) described the landslide as a debris avalanche flow,
but the term ‘flowslide’ may also be appropriate.

Eyewitness accounts, broadband seismicity radiated by the
landslide and the character of the landslide deposits are
consistent with the interpretation that the event involved
three key stages of motion (Iverson et al., 2015). First, only a
lower portion of the landslide moved, and it likely displaced
the colluvium left on the slope by prior episodes of land-
sliding as well as some of the underlying, bedded sediments.
This stage of motion lasted about 50 s, but it did not produce
a high-mobility landslide. As the first stage of landsliding
decelerated, a second stage developed. It involved abrupt,
retrogressive collapse of the debuttressed upslope bluff, which
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Fig. 5. Shaded relief lidar image of the 22 March 2014 Oso landslide,
Washington State, USA (latitude 48-:280°N, longitude 121-844°W).
The thick pale line (yellow online) denotes the perimeter of the
landslide path, and thinner pale lines denote boundaries of major
depositional units delineated by Iverson et al. (2015)

likely caused undrained loading of the already unstable
material downslope. A high-speed, partially liquefied land-
slide ensued, and it violently impacted the adjacent North
Fork Sillaguamish River. The third stage of motion involved
displacement or entrainment of as much as 50 000 m? of river
water, which facilitated development of a water-rich debris
flow at the leading edge of the landslide. The debris-flow
volume was relatively modest (about 200 000 m?), but the
debris flow was pushed across the adjacent 1-km-wide flood-
plain by the much larger debris avalanche behind it. The
duration of associated high-frequency ground shaking indi-
cates that the high-energy stage of landslide motion lasted
about 100 s (Iverson et al., 2015).

Estimation of the total volume of the Oso landslide
required differencing the 2013 and 2014 lidar topography,
but also required reconstruction of the landslide’s basal
slip-surface geometry. This reconstruction was necessary
because considerable landslide debris remained in the source
area at the conclusion of the event (Fig. 5). Three alternative
reconstructions yielded source-area volume estimates ranging
from 7-3 x 10 m> to 9-2 x 10° m?, with a mid-range value of
8:3x 10°m> deemed most plausible (Iverson ez al., 2015).
This basal slip surface reconstruction, along with the 2013
lidar topography, also established the initial geometry used in
the model simulations presented here.

Constraints from landslide mobility indices

Quantitative indices of landslide mobility help place the
behaviour of the Oso landslide in context, and also serve as
scalar metrics that are useful for comparing the results of the
model simulations. The best-known indices of landslide
mobility utilise ratios of a landslide’s vertical descent H
to horizontal extent L. One ratio, Hp,.,/Limax, 1S based on the
distances from the top of the landslide headscarp to the most
distant point on the landslide deposit (e.g. Corominas, 1996;
Legros, 2002). For the Oso landslide, the value H yax/Linax =
0-105 applies, indicating an unusually long runout distance
for an unchannelised landslide smaller than 10’ m* (Iverson
et al., 2015).

Another H/L ratio has deeper physical significance,
because it is based on the distances between the centre-
of-mass locations in the landslide source area and deposit.
Values of this ratio, Hcnm/Low, thereby serve as proxies for
net effective friction coefficients, in which any effects of
liquefaction are implicit (e.g. Legros, 2002). Typically values
of Hewm/Lewm are difficult to measure, but at Oso the pre- and
post-event lidar topography and source-area slip surface
reconstruction allowed Hcym/Loy to be determined with
high precision. It was found that Hcnm/Len =014 applies,
which indicates that the net effective basal friction angle was
der="tan "(Hem/Lem)~8°. The mobility of the landslide
centre of mass is expressed by the reciprocal value Lcyy/
H CM— 7-1.

Another mobility index gauges landslide spreading behav-
iour by expressing the total planimetric area 4 covered by a
landslide path as a function of landslide volume V. Statistical
trends established for diverse, high-speed landslides show
that A ~20V%? is typical (Griswold & Iverson, 2008). For the
Oso landslide it was found that A~307*? applies, indicating
that the landslide impacted an area about 50% larger than
expected for typical high-speed landslides of similar volume
(Iverson et al., 2015). The extensive spreading of the land-
slide debris at Oso was particularly noteworthy because the
landslide began at a site with relatively little potential energy.
The crown of the headscarp was only about 180 m higher
than the nearly horizontal depositional area on the adjacent
river floodplain.



LANDSLIDE LIQUEFACTION AND MOBILITY BIFURCATION 181

Numerical results for alternative landslide scenarios at Oso

The present numerical simulations of the Oso landslide do
not attempt to reproduce the details of the three stages of
motion described in the previous section. Rather, they focus
on landslide behaviour that can be computed by specifying
the full source-area geometry in addition to parameter values
that satisfy an initial static force balance. Modelled landslide
motion is triggered by increasing py/(pg-h) uniformly
throughout the landslide source area until motion begins
at the weakest point, and thereafter p,, evolves as part of
the solution of equations (9) through (13). In reporting the
numerical results, the time of the first detected motion in the
computational domain is designated as t=0, but not all of
the modelled landslide mass begins to move simultaneously.

Values of all parameters used in the alternative simulations
are summarised in Table 1. These values were inferred
from laboratory testing of sediment mixtures used in land-
slide and debris-flow experiments that involved uncompacted
materials similar to the predominantly sandy material ob-
served at Oso (Iverson et al., 2000, 2010). No parameter is
treated as a freely adjustable fitting coefficient, and most
importantly, the intrinsic basal friction angle has a fixed
value ¢ =36° in every simulation. By contrast, many land-
slide dynamics studies treat basal friction as an adjustable
calibration parameter (e.g. Hungr, 1995; Medina et al., 2008;
Lucas et al., 2014).

Normalisation of the governing equations (9) through (13)
leads to the inference that landslide behaviour predicted
by D-Claw with constant ¢ is most sensitive to the values
of mo—myg; and a dimensionless version of ky (Iverson &
George, 2014). This dimensionless version constitutes the
timescale ratio ko(Lo/g)l/z/aﬂH%, where L is the character-
istic landslide length, H, is the characteristic landslide
thickness, auHg/ky is the timescale for diffusive pore-pressure
relaxation and (Lo/g)"? is the characteristic time over which
landslide motion evolves. In the Oso simulations, variations
in the value of &y are the source of nearly all variations in the
value of ko(Lo/g)"*/auH3. Consequently the focus is placed
on kg rather than on its dimensionless analogue. Focus is
placed on mg rather than my — m;;, because the value m =
0-64 is held fixed. Thus, a primary purpose of the alternative
simulations is to investigate the sensitivity of model predic-
tions to variations in the values of m, and ky when the values
of other parameters are constant.

First consider the results of a baseline simulation that
provides a good match to the Oso landslide’s inferred speed
and area of inundation (Fig. 6 and an animation available for
viewing (USGS, 2015)). The simulation employs ko= 10" m?
and an initial solid volume fraction my,=0-62, which implies
that contractive soil deformation occurs during the early
stages of landslide motion. Within 30s of the onset of
local slope instability, this contraction leads to widespread
liquefaction (Fig. 6), which is accentuated by undrained

Table 1. Values of all parameters used in numerical simulations

compression due to fast-moving material exchanging
momentum with slower-moving material downslope. As a
result, between r=30s and 1=45s, the front of the highly
mobile landslide propagates at a speed averaging about
30m/s. As the landslide speed increases, however, the
equilibrium solid volume fraction m., declines, causing
contractive behaviour to locally transition into dilative
behaviour. This transition occurs most prominently where
the landslide is thinnest and fastest, and it reduces
pore pressures rapidly. As the modelled landslide moves
across the floodplain, its margins, in particular, lose pore
pressure and develop increased frictional resistance (see
t=45s and t=60s in Fig. 6). Nevertheless, the resistive
landslide front is pushed forward by liquefied material
behind it, and by 1=60s it has travelled across the entire
~1-km-wide floodplain. It subsequently undergoes relatively
slow lateral spreading. This modelled behaviour omits any
consideration of the Oso landslide’s entrainment of river
water, but it simulates effects commonly exhibited by
liquefied landslides and debris flows that produce lateral
levees and distal margins composed of high-friction material
(Johnson et al., 2012). In the Oso landslide, as in many debris
flows, this high-friction marginal material consisted largely
of shattered trees and other woody debris.

Significant variations in landslide mobility are predicted
by alternative simulations that use the constant value ko=
10~® m? but use differing values of n1,. These variations have
a considerable effect on the predicted distributions of land-
slide deposits (Fig. 7). The model results at t= 600 s provide a
suitable basis for comparing deposits, because in simulations
with my < 0-64, the landslide total kinetic energy at =600 s
is less than 0-01% of its peak value. The case with my=0-62
shows the deposit predicted by the simulation illustrated in
Fig. 6. It provides a reasonably good match to the final
distribution of deposits observed at Oso (indicated by the
outer white line shown in each panel of Fig. 7). Smaller
values of m, produce more extensive deposits, whereas larger
values of m, produce less extensive deposits. The simulation
with my=0-625 is noteworthy because it produces a deposit
that nearly matches the extent of the ‘debris avalanche’
portion of the deposit shown in Fig. 5. Thus, if the distal
debris flow veneer deposit at Oso was to be excluded, then the
simulation with m,=0-625 would be preferable to that with
ny=0-62.

Landslide energetics in alternative scenarios

Interpretation of the numerical results is facilitated by com-
puting scalar metrics that summarise landslide energetics for
simulations with values of m, rangin% from 0-60 to 0-68 and
values of k, ranging from 1:0 x 107 to 1:0 x 10" m?. For
example, the energy history for the simulated Oso landslide
behaviour depicted in Fig. 6 is shown in Fig. 8. To construct

Material property

Basal friction angle, ¢: degrees

Initial solid volume fraction, m,

Lithostatic critical-state solid volume fraction, mic
Initial hydraulic permeability, ko: m*

Pore fluid (muddy water) mass density, pr: kg/m?
Solid grain mass density, ps: kg/m
Compressibility proportionality coefficient, a
Compressibility reference normal stress, op: Pa
Pore fluid (muddy water) viscosity, u: Pa s
Characteristic grain diameter, J: m

Lateral pressure coefficient, x

Best-fit Oso landslide simulation Alternative simulations

36 36
0-62 0-60 to 0-68

0-64 0-64

1-0x 1078 10x107% to 1:0x 1077
1100 1100
2700 2700
0-03 0-03
1000 1000
0-005 0-005
0-001 0-001
1 1
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Fig. 6. Map views of the simulated behaviour of the Oso landslide using the baseline parameter values m,=0-62 and ko=10"%m’
(the same as values used by Iverson et al. (2015)). Landslide area is shown by shading (blue online), with intensity of the shading inversely
proportional to the degree of basal liquefaction. Base topography is shown in shaded relief and by topographic contours labelled with elevations
in metres
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Fig. 7. Distribution of deposits produced at £=600s by alternative simulations of landsliding at the Oso site. Simulations use k,=10"3m?,
a range of my values that are less than or equal to m;;=0-64, and hold all other parameter values constant (Table 1). Simulations with
my > mg,; yield results very similar to those with my=m,;,. White lines correspond to boundaries of landslide depositional units shown in
Fig. 5
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Fig. 8. Summary of energy evolution during the simulated behaviour
of the Oso landsllde using the baseline parameter values m,=0-62 and
ko= 10~* m>. PE denotes total potential energy, KE. denotes total
kinetic energy and KEcy; denotes centre-of-mass kinetic energy. PE
at t=90s exceeds PE at =60 s because some distal debris is pushed
onto higher ground adjacent to the southern edge of the floodplain
(Fig. 6)

this history, the initial potential energy (PE) of the landslide
is calculated by using the source-area geometry defined by
Iverson et al. (2015), a total landslide mass M =173 x 10" kg
and an elevation datum fixed at the lowest point in the
landslide runout path. Potential energy subsequently evolves
as the landslide mass loses elevation during motion. The
instantaneous total kinetic energy (KE ;) of the modelled
landslide is calculated by summing the translational kinetic
energies of all computational cells, whereas the kinetic energy
of the landslide centre of mass (KEcy,) is calculated from the
landslide mass and centre-of-mass translation speed. The
differences between these two kinetic energies are due to the
spreading of landslide material away from the centre of mass.
Nearly half of PE, of the modelled landslide (1-25 x 10" J)
is converted to KE, during the first 48 s of motion, and
KEcm represents about 85% of KE . at t=48s (Fig. 8).
Thereafter, both KEcy and KE,,; decline as the landslide
begins to decelerate.

A useful way of viewing the conversion of PE to KEcy
during acceleration of the modelled landslide is through
analogy with the energetics of a frictional point mass that
moves at the velocity of the landslide centre of mass. For a
point mass that gains kinetic energy as it descends a slope
inclined at the angle 6, the instantaneous energy conversion
efficiency expressed by —dKEcym/dPE is related to the
instantaneous effective basal friction angle @.g by

dHem ( dKECM>

dLcm dPE (19)

tan gy =
where dHcp/dLoy =tan @ describes the local slope instan-
taneously descended by the mass (see Appendix). In the
presence of 100% energy conversion efficiency, — dKEcn/
dPE=1 applies, indicating that ¢.;=0. More generally,
however, @ evolves as—dKEcy/dPE and dHcwm/dLem
vary along the landslide path.

The coevolution of — dKEc\/dPE and ¢ calculated by
applying equation (19) to the Oso landslide simulation shown
in Fig. 6 indicates that the energy conversion efficiency
averages about 25% as the landslide centre of mass accel-
erates, but that the peak energy conversion efficiency exceeds
70% (Fig. 9). This peak efficiency occurs at 1~40s, but a
continuing decrease of dHcn/dLcoy causes the minimum
effective basal friction to develop a few seconds later. This
minimum value is very small (¢. < 3°) as a consequence of a
high degree of transient liquefaction (e.g. at =45 s in Fig. 6).
Effective friction subsequently increases, followed by decel-
eration of the landslide centre of mass beginning at t=48s.
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Fig. 9. Energy conversion efficiency —dKEcy/ dPE and effective
basal friction angle ¢ calculated using centre-of-mass motion of the
simulated Oso landsllde with the baseline parameter values my=0-62
and ko=10"% m?. Evolution of @etr during 0 <7 < 8 s is not monotonic
because it is affected by subtle geometric changes that influence
dHcp/d Ly during the first stages of landslide motion

(After =48 s, KEcy declines, and equation (19) is no longer
valid.) A key aspect of the evolution of effective friction
shown in Fig. 9 is that it is predicted, rather than specified, by
the model. Other landslide dynamics models commonly
specify an evolution of effective friction in order to fit ob-
servations (e.g. Lucas et al., 2014).

The evolution of total kinetic energy depends strongly on
values of mgy and k¢ used in alternative simulations. When
ko=10"%m? is held constant, both the peak kinetic energy
and the kinetic energy growth rate decline systematically
as the value of myg increases from 0-62 to the lithostatic
critical-state value my=mi.; = 0-64 (Fig. 10). This behaviour
is a clear consequence of a reduced propensity for sediment
contraction and liquefaction during landslide motion.

More complicated variations in kinetic energy evolution
are evident in simulations that hold my=0-62 constant but
use differing values of ky (Fig. 11). Chan§1ng the per-
meability from the baseline value ky=10"°m" to the larger
value ko=10""m? causes the modelled landslide to initially
gain kinetic energy at an increased rate, but to subsequently
lose energy more rapidly. These relatively rapid gains and
losses of kinetic energy are a consequence of the effect of kon
the timescale for pore-pressure response, ayh /3k, which
appears in equation (13). When this timescale is sufficiently
small, pore pressure can be generated rapidly by contractive
deformation, but excess pore pressure also dissipates rapidly
after Contraction ceases. Therefore, the modelled landslide
with ko—IO "m? exhibits only moderate net mobilit
comparison to the modelled Oso landslide with ko= 10 m
By contrast, if the value of k is reduced from 10 ¥m? to

Kinetic energy: x1012 J

Time: s

Fig. 10. Evolution of total kinetic energy in alternative Oso landslide
simulations that employ the baseline value ky=10"®m?” and varying
values of m,. Non-zero kinetic energy develops with n,=0-64 but is
not visible on this scale
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Fig. 11. Evolution of total kinetic energy in alternative Oso landslide
simulations that employ the baseline value 71p=0-62 and varying
values of k¢

10~ m?, the landslide accelerates more slowly and gains
kinetic energy at a reduced rate, because liquefaction is
initially retarded by low permeability (Fig. 11). Liquefaction
eventually becomes more pervasive and persistent than in
the baseline case with kole’8 m?, however. Therefore,
the modelled landslide with ko= 10"" m” ultimately exhibits
increased runout, despite the fact that its peak kinetic energy
is smaller than that of the landslide with ko=10"%m>.

Landslide mobility indices for alternative scenarios

Clear trends emerge when scalar indices of landslide
mobility are calculated from the results of alternative simul-
ations that use values of m, ranging from 0-60 to 0-68 and
values of ky ranging from 10~ to 107" m”. One mobility
index gauges the landslide energy conversion efficiency by
dividing the peak total kinetic energy KE,,.x by the initial
landslide potential energy, PEy. A graph of KE,../PE, as
a function of mq and k, shows that, irrespective of the value
of ky, the energy conversion efficiency is universally < 0-04
if mg>me;, but it increases systematically and roughly in
proportion to mig — myg if mg < mey (Fig. 12). Thus, as a
result of a transition in the propensity for landslide lique-
faction, a behavioural bifurcation separating slow landslide
motion from runaway, high-speed motion occurs at my=
mqi. However, the bifurcation becomes more muted as kg
increases, as would be expected from the results shown in Fig.
11. Also consistent with those results is a trend showing that
KE ax/PEy has little to no dependence on ky if ky < 10~% m?.
This behaviour arises from the effect of low permeability in
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Fig. 12. Landslide mobility index KE,,,./PE, expressing peak total
kinetic energy divided by initial potential energy in alternative Oso
landslide simulations, which employ a range of m, and k, values.
Dashed line designates the bifurcation value ny=m_;=0-64. Values
of KE,,.x/PE are non-zero in every case but are universally small for
Mo > Myt

retarding the early stages of landslide liquefaction and
acceleration.

The same set of simulations summarised in Fig. 12 yields
centre-of-mass mobility indices Lcy/Hew that range from
less than 3 to more than 15 for contractive cases with my <
Merie (Fig. 13). The empirically determined value for the Oso
landslide was Lcy/Hem =7-1, and no simulation presented
here yields this precise value. However, Fig. 13 shows that
tuning the values of mgy and k, could easily yield an exact
match to Lem/Hem=7-1, if that were desirable. More
importantly, computed values of Lcy/Hcen increase mono-
tonically as m; — mg increases and as ko decreases. Thus, the
effect of low permeability in causing persistent liquefaction
that enhances runout is evident in the mobility index
Lceym/Hewn — despite the fact that low permeability initially
retards liquefaction and landslide acceleration (Fig. 11 and
Fig. 12). Like the index KE,,./PE,, the index Lcv/Hem
demonstrates a mobility bifurcation at my=mi.. Moreover,
the bifurcation becomes muted as the value of ky increases.
Finally, it is noted that Fig. 13 lacks data points for ko=
10" m? and m, < 0-62. No final deposit geometries were
computed for such cases because the simulated landslides
were so mobile that they left the computational domain.

The simulations also yield values of the mobility index
AIV?3, which provides a measure of the area inundated
during landslide spreading. Simulations for contractive cases
with my < mey, yield values of 4/V%? ranging from about 10
to about 50, whereas all simulations for dilative cases with
mg > Mey yield AV =10 (Fig. 14). The observed value for
the Oso landslide is A/V**~30. Again, no exact match is
provided by any of these simulations, but the trends evident in
Fig. 14 provide strong evidence that the value ko= 105 m?
provides better predictions of inundation areas than do the
alternative values ky=10""m? or ko=10"" m?. Details of
computed inundation areas for simulations with ko= 10" m?
are shown in Fig. 7.

CONCLUSIONS

The dynamics of the disastrous Oso landslide of 22 March
2014 can be analysed by using a recently developed depth-
integrated computational model, called D-Claw. The model
simulates landslide motion that begins when a statically
balanced initial state is perturbed by gradually increasing
basal pore-water pressure. Following onset of motion, effec-
tive landslide friction evolves as a consequence of coupled
evolution of the depth-integrated solid volume fraction and
basal pore pressure.
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Fig. 13. Landslide mobility index Lcw/Hcey expressing  total
translation of centre of mass computed in alternative Oso landslide
simulations, which employ a range of m, and &, values. Dashed line
designates the bifurcation value my=m_;=0-64
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Fig. 14. Landslide mobility index 4/V*? expressing area of landslide
path computed in alternative Oso landslide simulations, which employ
a range of my and ko values and hold V'=8-3% 10°m>® constant.
Dashed line designates the bifurcation value my=m_; = 0-64

A suite of alternative simulations of the Oso event uses a
fixed basal slip-surface geometry as well as fixed values of the
basal friction angle ¢ =36° and lithostatic critical-state solid
volume fraction m;=0-64. The simulations show that
pore-pressure feedback may or may not lead to widespread
liquefaction and high landslide mobility, contingent mostly
on the difference between mi;; and the initial solid volume
fraction, my. A landslide mobility bifurcation consequently
arises due to differences between initial soil conditions that
favour contractive behaviour and positive pore-pressure feed-
back (with mg < m;;), and those that favour dilative behav-
iour and negative pore-pressure feedback (with my > m;).
The bifurcation is muted by increasing the value of the initial
hydraulic permeability, k.

A D-Claw simulation that fits the inferred event duration
and mapped inundation area of the Oso landslide reasonably
well utilises 79=0-62 and ko= 10~% m?, implying that slightly
contractive shear behaviour and moderate permeability influ-
ence the early stages of landslide motion. This simulation
predicts that widespread liquefaction develops over the course
of about 30 s following the onset of local slope instability at 7 =
0. During the ensuing landslide runout, liquefaction causes the
landslide front to advance at speeds reaching 30 m/s, causes the
conversion of potential energy to kinetic energy to peak at an
efficiency > 70%, and causes the instantaneous effective basal
friction angle to reach a minimum value ¢ ;<< 3° at t~42s.
Deceleration of the landslide centre of mass begins 6 s later,
but advance of the landslide’s distal margin continues until
it is impeded by topographic obstructions. As a result, the
modelled landslide crosses the 1-km breadth of the adjacent
river floodplain in about 60 s.

Alternative simulations reveal the sensitivity of modelled
landslide behaviour to the values of m and k. Three landslide
mobility indices demonstrate this sensitivity by summarising
results of simulations in which values of m, range from 0-6 to
0-68 and values of k, range from 10~ to 10~7 m* The indices
gauge the conversion of gravitational potential energy to peak
kinetic energy (KE,,.x/PEg), the normalised distance of
translation of the landslide centre of mass (Lcwm/Hcewm), and
the normalised planimetric area impacted by the landslide
(A/V*3). For simulations with n1g > ey, all indices show that
landslide mobility is quite limited and is nearly invariant.
These modelled landslides travel only about 100 m before
stopping. By contrast, for simulations with m < m, land-
slide mobility increases dramatically as m, decreases, with a
bifurcation in mobility at mg=mi.;. For values ko < 108 m?,
the bifurcation is quite sharp, but for ky=10""m? it is more
subdued. This muting of the bifurcation is a consequence of the
reduced efficacy of liquefaction that occurs when permeability
is large enough to allow rapid pore-pressure relaxation.

An important practical implication of these findings is that
large differences in landside mobility can result from small
differences in initial conditions. Model studies aimed at land-
slide hazard prognostication can in principle account for the
associated uncertainties by adopting probabilistic methods.
Nevertheless, the challenge in making useful predictions is
great, because bifurcating landslide dynamics can result in
divergent outcomes.

APPENDIX. RELATION BETWEEN BASAL
FRICTION AND ENERGY CONVERSION
FOR A TRANSLATING POINT MASS

The momentum-conservation equation for a rigid frictional body

of mass M descending a slope inclined at the angle 8 is
du .

Ma = Mg(sin 6 — cosOtan ¢) (20)
where ¢ is the basal friction angle and u is the velocity parallel to the
slope. The rates of change of the potential energy (PE) and kinetic
energy (KE) of the mass during this motion are given by

dPE dz

5 = Mgy = Mgu: (21)
and

dKE 1 du? du
e M~ = Mu—

dr 2 dr "
where z is the vertical coordinate of the mass, u. = dz/dt is the vertical

component of u, and downward motion implies that u.<0.
Equations (21) and (22) may be combined to obtain

dKE  u du/dt

dPE  u. g
Because u. < 0, equation (23) indicates that dKE/dPE < 0 if du/dt >
0. This result reflects the simultaneous growth of kinetic energy and
loss of potential energy as the mass accelerates downslope. By
multiplying each term of equation (20) by u/ Mg and then employing
the substitution u sin = —u., equation (20) can be reduced to

_ udu/dit

(22)

(23)

tanqﬁil

tan 6 T g (24)
Combination of equations (23) and (24) then yields
dKE
. — 1 2
tan ¢ tanH( + dPE) (25)

Finally, if the local angle of the slope is expressed as tan =
dHcwm/dLew, then equation (25) can be written as

dHcem ( | dKE)

@ang =g dPE

(26)

This equation relates the effective basal friction coefficient tang
to the energy-conversion efficiency — dKE/dPE during infinitesimal
displacements with vertical and horizontal components given by
dHCM and dLCM
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NOTATION
A planimetric area of landslide path
a dimensionless coefficient in compressibility equation



186 IVERSON AND GEORGE

b elevation of landslide base
D depth-integrated granular dilation rate
e void ratio
g magnitude of gravitational acceleration vector
gx &» 8- Cartesian components of gravitational acceleration

vector
Hcy o vertical height traversed by landslide centre of mass
H...x total vertical height encompassed by landslide path
h  landslide thickness in z direction
K hydraulic conductivity
KEcnm  landslide centre-of-mass kinetic energy
KEax landslide peak kinetic energy
KE w1 landslide total kinetic energy
k intrinsic hydraulic permeability
ko initial value of k
L landslide length
Lcv horizontal distance traversed by landslide centre of mass
Lnax total horizontal distance encompassed by landslide path
M landslide mass
m  solid volume fraction (=1—n=1/(1 +e¢))
meye  lithostatic critical-state value of m
meq  dynamic equilibrium value of m
myq initial value of m
N dimensionless state parameter
n  porosity
PE landslide gravitational potential energy
PE, initial value of PE
p pore-fluid pressure
pu  basal pore-fluid pressure
pe excess pore-fluid pressure (i.e. deviation from hydrostatic
pressure)
q specific discharge of pore fluid
q- zcomponent of ¢

t time
u, v, w Cartesian components of v in the x, y and z directions,
respectively

V' landslide volume
v velocity of solid—fluid mixture
ve  velocity of pore-fluid phase
vs velocity of granular solid phase
x, y, z orthogonal Cartesian coordinates, with z positive
upward
bulk compressibility of solid—fluid mixture
shear rate of solid—fluid mixture
characteristic grain diameter
elevation of landslide surface
lateral pressure coefficient
dynamic viscosity of pore fluid
slope angle
bulk density of solid—fluid mixture
mass density of pore fluid
mass density of solid grains
o, effective normal stress
oo reference value of normal stress
¢ constant-volume basal friction angle
oy effective basal friction angle
w dilatancy angle
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